[1]穆林,雷勇刚,宋翀芳,等.相变蓄热材料导热系数对太阳能通风墙性能的影响[J].华侨大学学报(自然科学版),2017,38(6):830-835.[doi:10.11830/ISSN.1000-5013.201612040]
 MU Lin,LEI Yonggang,SONG Chongfang,et al.Effect of Thermal Conductivity on Performance of Solar Chimney With Phase Change Accumulator[J].Journal of Huaqiao University(Natural Science),2017,38(6):830-835.[doi:10.11830/ISSN.1000-5013.201612040]
点击复制

相变蓄热材料导热系数对太阳能通风墙性能的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第6期
页码:
830-835
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Effect of Thermal Conductivity on Performance of Solar Chimney With Phase Change Accumulator
文章编号:
1000-5013(2017)06-0830-06
作者:
穆林 雷勇刚 宋翀芳 程远达
太原理工大学 环境科学与工程学院, 山西 太原 030024
Author(s):
MU Lin LEI Yonggang SONG Chongfang CHENG Yuanda
School of Environment Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
太阳能烟囱 相变材料 蓄热墙 通风 导热系数
Keywords:
solar chimney phase change materials thermal storage wall ventilation thermal conductivity
分类号:
TU834
DOI:
10.11830/ISSN.1000-5013.201612040
文献标志码:
A
摘要:
通过对相变蓄热型太阳能烟囱模型通风蓄放热变化过程的计算,分析比较不同相变蓄热墙导热系数对太阳能烟囱性能的影响.计算结果表明:吸热板最大表面温度随着相变蓄热墙导热系数的增大越接近相变蓄热墙的相变温度;蓄热阶段,入口平均风速随着相变蓄热墙导热系数的增大而减小;放热阶段,入口平均风速随着相变蓄热墙导热系数的增大反而越大;相变蓄热墙导热系数越大,蓄热型太阳能烟囱系统16 h的累计通风量越高,但在导热系数增大到0.66 W·(m·K)-1后,再增大材料导热系数,累计通风量几乎不再增加.
Abstract:
The influence of different thermal conductivities of phase change and thermal storage wall on the performance of solar chimney was analyzed and compared through the calculation of the ventilation and heat storage or release change process of the phase change and thermal storage type of solar chimney model. The results show that the maximum temperature of the heat absorber plate is more close to the phase change temperature with the increase of the thermal conductivity of the phase change and heat storage wall. The average inlet wind velocity reduces with the increase of the thermal conductivity for the process of heat storage, while increases for the process of heat release. The higher the thermal conductivity of the phase change and thermal storage wall is, the higher the cumulative ventilation in 16 hours of the regenerative solar chimney system will be.But when the thermal conductivity is increased to 0.66 W·(m·K)-1, the cumulative ventilation has almost no increase even if increasing the thermal conductivity of the material.

参考文献/References:

[1] ARKAR C,MEDVED S.Free cooling of a building using PCM heat storage integrated into the ventilation system[J].Solar Energy,2007,81(9):1078-1087.DOI:10.1016/j.solener.2007.01.010.
[2] STRITIH U,NOVAK P.Solar heat storage wall for building ventilation[J].Renewable Energy,1996,8(1/2/3/4):268-271.DOI:10.1016/0960-1481(96)88860-4.
[3] AMORI K E,MOHAMMED S W.Experimental and numerical studies of solar chimney for natural ventilation in Iraq[J].Energy and Buildings,2012,47(4):450-457.DOI:10.1016/j.enbuild.2011.12.014.
[4] DAVID D,KUZNIK F,ROUX J J.Numerical study of the influence of the convective heat transfer on the dynamical behaviour of a phase change material wall[J].Applied Thermal Engineering,2011,31(16):3117-3124.DOI:10.1016/j.applthermaleng.2011.04.
[5] LIU Bin,LI Peng,MA Xiaoyan,et al.Chimney effect of solar hybrid-double wall with different thickness PCM of Na2CO3·10H2O[J].Energy Procedia,2015,75:521-526.DOI:10.1016/j.egypro.2015.07.443.
[6] GRACIA A D,NAVARRO L,CASTELL A,et al.Experimental study of a ventilated facade with PCM during winter period[J].Energy and Buildings,2012,58(2):324-332.
[7] GRACIA A D,NAVARRO L,et al.Solar absorption in a ventilated facade with PCM: Experimental results[J].Energy Procedia,2012,30(1):986-994.DOI:10.1016/j.enbuild.2012.10.026.
[8] 李风雷,任艳玲.典型气象日蓄热型太阳能喷射制冷系统性能分析[J].华侨大学学报(自然科学版),2014,35(2):185-190.DOI:10.11830/ISSN.1000-5013.2014.02.0185.
[9] LI Yongcai,LIU Shuli.Experimental study on thermal performance of a solar chimney combined with PCM[J].Applied Energy,2014,114:172-178.DOI:10.1016/j.apenergy.2013.09.022.
[10] LI Yongcai,LIU Shuli,SHUKLA A.Experimental analysis on use of thermal conductivity enhancers(TCEs)for solar chimney applications with energy storage layer[J].Energy and Buildings,2016,116:35-44.DOI:10.1016/j.enbuild.2015.12.049.
[11] 吴彦廷,周国兵.太阳能相变蓄热集热墙二维非稳态模型及分析[J].太阳能学报,2010,33(6):949-952.
[12] 李永财.太阳能通风技术结合相变蓄热材料自然通风效果实验研究[D].重庆:重庆大学,2009:1-101.
[13] 卢军,赵娟,黄光勤,等.太阳能蓄能通风系统理论模型[J].土木建筑与环境工程,2012,34(3):64-74.
[14] 王元明.石蜡/碳纳米管复合相变材料的性能研究[J].现代化工,2015,35(1):130-134.
[15] RYAN D,BUREK S A M.Experimental study of the influence of collector height on the steady state performance of a passive solar air heater[J].Solar Energy,2010,84(9):1676-1684.DOI:10.1016/J.SOLENER.2010.05.018.

相似文献/References:

[1]陈跃,吴璠,张赫男,等.相变蓄热水箱的性能优化模拟分析[J].华侨大学学报(自然科学版),2023,44(1):71.[doi:10.11830/ISSN.1000-5013.202208006]
 CHEN Yue,WU Fan,ZHANG Henan,et al.Performance Optimization Simulation Analysis of Phase-Change Heat Storage Tank[J].Journal of Huaqiao University(Natural Science),2023,44(6):71.[doi:10.11830/ISSN.1000-5013.202208006]

备注/Memo

备注/Memo:
收稿日期: 2016-12-20
通信作者: 雷勇刚(1976-),男,教授,博士,主要从事低功耗强化传热技术、供热技术和建筑节能技术的研究.E-mail:yongganglei@gmail.com.
基金项目: 国家自然科学基金资助项目(51106103, 51408391)
更新日期/Last Update: 2017-11-20