[1]刘智.径向基神经网络算法在车牌字符识别中的应用[J].华侨大学学报(自然科学版),2017,38(1):113-116.[doi:10.11830/ISSN.1000-5013.201701022]
 LIU Zhi.Application of Radial Basis Function Neural Network Algorithm in License Plate Character Recognition[J].Journal of Huaqiao University(Natural Science),2017,38(1):113-116.[doi:10.11830/ISSN.1000-5013.201701022]
点击复制

径向基神经网络算法在车牌字符识别中的应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第1期
页码:
113-116
栏目:
出版日期:
2017-01-09

文章信息/Info

Title:
Application of Radial Basis Function Neural Network Algorithm in License Plate Character Recognition
文章编号:
1000-5013(2017)01-0113-04
作者:
刘智
广西科技大学 网络与现代教育技术中心, 广西 柳州 545006
Author(s):
LIU Zhi
Network and Modern Education Technology Center, Guangxi University of Science and Technology, Liuzhou 545006, China
关键词:
汽车车牌 字符分割 字符识别 径向基网络
Keywords:
vehicle license plate character segmentation character recognition radial basis function network
分类号:
TP391.41
DOI:
10.11830/ISSN.1000-5013.201701022
文献标志码:
A
摘要:
提出一种基于径向基网络的汽车车牌字符识别算法.在预处理阶段,采用灰度化、自适应阈值分割去除图像噪声并增强图像对比度;在字符分割阶段,采用极限元素位置确定法实现独立字符分割;在字符识别阶段,利用自行构建的字符子块图像库对径向基神经网络进行训练.选取基于反向传播(BP)神经网络的字符识别算法和基于支持向量机(SVM)的字符识别算法与文中方法进行比较.实验结果表明:文中方法在识别准确率上具有明显优势,更适用于汽车车牌的字符识别.
Abstract:
A vehicle license plate character recognition algorithm based on radial basis function network is proposed. In the preprocessing stage, image noise is removed and the contrast of image is enhanced by adaptive threshold segmentation and grayscale; at the character segmentation stage, using the limit element method to determine the position of independent character segmentation; in the stage of character recognition, the training of the radial basis function neural network is used to construct the character sub block image library. The character recognition algorithm based on back propagation(BP)neural network and the character recognition algorithm based on support vector machine(SVM)are selected, and the method is compared with the method in this paper. Experimental results show that this method has obvious advantages in recognition accuracy, and it is more suitable for vehicle license plate character recognition.

参考文献/References:

[1] NAGARE A P.License plate character recognition system using neural network[J].International Journal of Computer Applications,2011,25(10):36-39.
[2] SINGH V K,PIRYANI R,UDDIN A,et al.Sentiment analysis of textual reviews: Evaluating machine learning, unsupervised and sentiwordnet approaches[C]//International Conference on Knowledge and Smart Technology.Chonburi:IEEE Press,2013:122-127.
[3] 康忠林,黄华灿.采用小波伪运动分解的车牌定位法[J].华侨大学学报(自然科学版),2008,29(3):360-363.
[4] 吴文艺,崔长彩,叶瑞芳,等.采用二次灰度直方图的砂轮磨粒图像阈值分割[J].华侨大学学报(自然科学版),2016,37(4):422-427.
[5] SARKER M M K,SONG M K.Korean car license plate character recognition using local line binary pattern[C]//Proceedings of the Winter 2015 General Conference on Korea Information and Communications Society.South Korea:SERC Press,2015:111-120.
[6] GHAHNAVIEH A E,RAIE A A.A new hierarchical architecture based on SVM for Persian license plate character recognition[J].Journal of Advances in Computer Research,2016,7(1):49-66.
[7] HONG Tao,GOPALAKRISHNAM A K.License plate extraction and recognition of a Thai vehicle based on MSER and BPNN[C]//International Conference on Knowledge and Smart Technology.Chonburi:IEEE Press,2015:48-53.
[8] 刘永平,郭小波.基于最小二乘支持向量机车牌字符特征识别[J].数字技术与应用,2015(7):119-120.
[9] 方承志,周品,付世清.基于小波核LS-SVM的车牌字符识别算法研究[J].计算机技术与发展,2015(3):86-90.
[10] 贾文其,李明,朱美强,等.基于栈式降噪自编码神经网络的车牌字符识别[J].计算机工程与设计,2016,37(3):751-756.

备注/Memo

备注/Memo:
收稿日期: 2016-11-25
通信作者: 刘智(1979-),女,副教授,主要从事模式识别与智能系统的研究.E-mail:864139988@qq.com.
基金项目: 广西教育厅高校科研资助项目(LX2014187)
更新日期/Last Update: 2017-01-20