[1]钟必能,潘胜男.选择性搜索和多深度学习模型融合的目标跟踪[J].华侨大学学报(自然科学版),2016,37(2):207-212.[doi:10.11830/ISSN.1000-5013.2016.02.0207]
 ZHONG Bineng,PAN Shengnan.Multi-Clue Fusion Target Tracking Algorithm Based on Selective Search and Deep Learning[J].Journal of Huaqiao University(Natural Science),2016,37(2):207-212.[doi:10.11830/ISSN.1000-5013.2016.02.0207]
点击复制

选择性搜索和多深度学习模型融合的目标跟踪()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第2期
页码:
207-212
栏目:
出版日期:
2016-03-20

文章信息/Info

Title:
Multi-Clue Fusion Target Tracking Algorithm Based on Selective Search and Deep Learning
文章编号:
1000-5013(2016)02-0207-06
作者:
钟必能12 潘胜男12
1. 华侨大学 计算机科学与技术学院, 福建 厦门 361021;2. 华侨大学 计算机视觉与模式识别重点实验室, 福建 厦门 361021
Author(s):
ZHONG Bineng12 PAN Shengnan12
1. College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China; 2. Computer Vision and Pattern Recognition Laboratory, Huaqiao University, Xiamen 361021, China
关键词:
目标跟踪 深度学习 多模型融合 选择性搜索 评价指标
Keywords:
object tracking deep learning multi-clue fusion selective search evaluating indicator
分类号:
TP301
DOI:
10.11830/ISSN.1000-5013.2016.02.0207
文献标志码:
A
摘要:
提出一种基于深度学习的多模型(卷积神经网络和卷积深信度网络)融合目标跟踪算法.该算法在提取候选粒子方面,使用选择性搜索和粒子滤波的方法.CVPR2013跟踪评价指标(50个视频序列、30个跟踪算法)验证了:该算法在跟踪中能有效地缓解目标物体由于遮挡、光照变化和尺度变化等因素造成的跟踪丢失情况的发生.
Abstract:
A multi-clue tracking algorithm(convolutional neural network and convolutional deep belief network)based on deep learning was proposed. The algorithm used selective search and particle filtering method in extracting candidate particles. CVPR2013 tracking benchmark(50 video sequences, 30 tracking algorithms)verifies: the algorithm can ease the loss of tracking due to the occlusion, the change of illumination and size etc.

参考文献/References:

[1] FAN Jialue,XU Wei,WU Ying,et al.Human tracking using convolutional neural networks[J].IEEE Trans Neural Netw,2010,21(10):1610-1623.
[2] CARNEIRO G,NASCIMENTO J C.Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(11):1649-1665.
[3] WANG Naiyan,YEUNG D Y.Learning a deep compact image representation for visual tracking[C]//Proceedings of Twenty-Seventh Annual Conference on Neural Information Processing Systems.Nevada:MIT Press,2013:5-10.
[4] UIJLINGS J R R,van DE SANDE K E A,GEVERS T,et al.Selective search for object recongnition[J].International Journal of Computer Vision,2013,104(2):154-171.
[5] CARREIRA J,SMINCHISESCU C.Cpmc: Automatic object segmentation using constrained parametric min-cuts[J].PAMI,2012,34(7):1312-1328.
[6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.Washington:MIT Press,2012:2-8.
[7] LEE H,LARGMAN Y,PHAM P,et al.Unsupervised feature learning for audio classification using convolutional deep belief networks[C]//Advances in Neural Information Processing Systems.New York:MIT Press,2009:1-22.
[8] HUANG G B,LEE H,LEARNED-MILLER E.Learning hierarchical representations for face verification with convolutional deep belief[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,8(6):1836-1844.
[9] LEE H,GROSSE R,RANGANATH R,et al.Unsupervised learning of hierarchical representations with convolutional deep belief networks[J].Communications of the ACM,2011,54(10):95-103.
[10] TORRALBA A,FERGUS R,FREEMAN W.80 million tiny images: A large data set for nonparametric object and scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
[11] WU Yi,LIM J,YANG M H.Online object tracking: A benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition.Portland:IEEE Press,2013:2-10.

相似文献/References:

[1]刘韶涛,姚灿荣.结合PSO的改进压缩跟踪方法[J].华侨大学学报(自然科学版),2017,38(1):121.[doi:10.11830/ISSN.1000-5013.201701024]
 LIU Shaotao,YAO Canrong.Improved Compress Tracking Algorithm Based on PSO[J].Journal of Huaqiao University(Natural Science),2017,38(2):121.[doi:10.11830/ISSN.1000-5013.201701024]
[2]黄德天,顾培婷,柳培忠,等.改进的自适应核相关滤波目标跟踪[J].华侨大学学报(自然科学版),2017,38(5):693.[doi:10.11830/ISSN.1000-5013.201606062]
 HUANG Detian,GU Peiting,LIU Peizhong,et al.Improved Adaptive Target Tracking Based on Kernelized Correlation Filters[J].Journal of Huaqiao University(Natural Science),2017,38(2):693.[doi:10.11830/ISSN.1000-5013.201606062]
[3]邹辉,杜吉祥,翟传敏,等.深度学习与一致性表示空间学习的跨媒体检索[J].华侨大学学报(自然科学版),2018,39(1):127.[doi:10.11830/ISSN.1000-5013.201508047]
 ZOU Hui,DU Jixiang,ZHAI Chuanmin,et al.Cross-Modal Multimedia Retrieval Based Deep Learning and Shared Representation Space Learning[J].Journal of Huaqiao University(Natural Science),2018,39(2):127.[doi:10.11830/ISSN.1000-5013.201508047]
[4]顾培婷,黄德天,黄炜钦,等.抗遮挡的相关滤波目标跟踪算法[J].华侨大学学报(自然科学版),2018,39(4):611.[doi:10.11830/ISSN.1000-5013.201608031]
 GU Peiting,HUANG Detian,HUANG Weiqin,et al.Anti-Occlusion Object Tracking Algorithm Based on Kernelized Correlation Filters[J].Journal of Huaqiao University(Natural Science),2018,39(2):611.[doi:10.11830/ISSN.1000-5013.201608031]
[5]张圣祥,郑力新,朱建清,等.采用深度学习的快速超分辨率图像重建方法[J].华侨大学学报(自然科学版),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
 ZHANG Shengxiang,ZHENG Lixin,ZHU Jianqing,et al.Fast Super-Resolution Image Reconstruction Method Using Deep Learning[J].Journal of Huaqiao University(Natural Science),2019,40(2):245.[doi:10.11830/ISSN.1000-5013.201804064]
[6]胡珉,周显威,高新闻.公路隧道视频预处理和病害识别算法[J].华侨大学学报(自然科学版),2020,41(5):595.[doi:10.11830/ISSN.1000-5013.202002024]
 HU Min,ZHOU Xianwei,GAO Xinwen.Video Preprocess and Defect Recognition Algorithm for Road Tunnel[J].Journal of Huaqiao University(Natural Science),2020,41(2):595.[doi:10.11830/ISSN.1000-5013.202002024]
[7]马迎杰,王佳斌,郑力新,等.深度可分离卷积网络的驾驶状态识别算法[J].华侨大学学报(自然科学版),2021,42(2):259.[doi:10.11830/ISSN.1000-5013.202001010]
 MA Yingjie,WANG Jiabin,ZHENG Lixin,et al.Driving State Recognition Algorithm Based on Deep Separable Convolutional Network[J].Journal of Huaqiao University(Natural Science),2021,42(2):259.[doi:10.11830/ISSN.1000-5013.202001010]
[8]叶靓玲,李伟达,郑力新,等.结合目标检测与特征匹配的多目标跟踪算法[J].华侨大学学报(自然科学版),2021,42(5):661.[doi:10.11830/ISSN.1000-5013.202105018]
 YE Liangling,LI Weida,ZHENG Lixin,et al.Multiple Object Tracking Algorithm Based on Detection and Feature Matching[J].Journal of Huaqiao University(Natural Science),2021,42(2):661.[doi:10.11830/ISSN.1000-5013.202105018]
[9]周密,张维纬,陶英杰,等.采用可替代滤波器的卷积神经网络模型剪枝方法[J].华侨大学学报(自然科学版),2022,43(2):245.[doi:10.11830/ISSN.1000-5013.202011013]
 ZHOU Mi,ZHANG Weiwei,TAO Yingjie,et al.Pruning Method of Convolutional Neural Network Using Replaceable Filter[J].Journal of Huaqiao University(Natural Science),2022,43(2):245.[doi:10.11830/ISSN.1000-5013.202011013]

备注/Memo

备注/Memo:
收稿日期: 2015-06-16
通信作者: 钟必能(1981-),男,副教授,博士,主要从事计算机视觉、模式识别、目标跟踪方面的研究.E-mail:bnzhong@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61202299); 国家自然科学基金面上资助项目(61572205); 福建省自然科学基金资助项目(2015J01257); 福建省高校杰出青年科研人才培育计划项目(JA13007)
更新日期/Last Update: 2016-03-20