[1]刘钰佳,谭鸽伟.改进的自适应最优低秩信道估计算法[J].华侨大学学报(自然科学版),2016,37(2):179-184.[doi:10.11830/ISSN.1000-5013.2016.02.0179]
 LIU Yujia,TAN Gewei.Improved Adaptive Optimal Low-Rank Channel Estimation Algorithm[J].Journal of Huaqiao University(Natural Science),2016,37(2):179-184.[doi:10.11830/ISSN.1000-5013.2016.02.0179]
点击复制

改进的自适应最优低秩信道估计算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第2期
页码:
179-184
栏目:
出版日期:
2016-03-20

文章信息/Info

Title:
Improved Adaptive Optimal Low-Rank Channel Estimation Algorithm
文章编号:
1000-5013(2016)02-0179-06
作者:
刘钰佳 谭鸽伟
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
LIU Yujia TAN Gewei
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
正交频分复用 信道估计 频率选择性 时变 自适应 低秩 AIC准则
Keywords:
orthogonal frequency division multiplexing channel estimation frequency-selective time varying adaptive low rank akaike criterion
分类号:
TN929.5
DOI:
10.11830/ISSN.1000-5013.2016.02.0179
文献标志码:
A
摘要:
针对正交频分复用系统中线性最小均方误差(LMMSE)信道估计算法计算复杂度高,且存在当信道的统计特性与先验知识不匹配时估计性能恶化的问题,利用信道频域冲激响应的移动平均自相关函数,结合子空间分解、跟踪和序列正交原理,提出一种改进的自适应最优低秩信道估计算法.对比文中算法和LMMSE算法、LS算法和联合AIC(akaike criterion)秩估计准则的自适应低秩信道估计算法,结果表明:文中算法的秩估计更为精确;在插入导频数量较少的情况下,改进的信道估计算法能获得更高的信噪比性能增益.
Abstract:
Aiming at the problems of high computational complexity and estimation performance deteriorating when the statistical characteristics and prior knowledge of channel are mismatch of linear minimun mean square error channel estimation algorithm(LMMSE)in the orthogonal frequency division multiplexing system(OFDM), an improved adaptive channel estimation algorithm jointing channel rank estimation has been proposed, in which the moving-average channel correlation matrix, subspace decomposition, tracking and principle of orthogonal sequence are employed. Simulation results show that compared to different channel estimation algorithms including LMMSE, Least Sqrare channel estimation algorithm(LS), adaptive channel estimation joint akaike criterion(AIC)channel rank estimation(LRA-AIC)in frequency selective time varying channel, the proposed scheme has the best bit error rate performance and rank estimation is more accurate, and the proposed channel estimation can achieve higher RSN performance gain under a less number of inserted pilots, thus solving the problems of high complexity of channel estimation algorithm.

参考文献/References:

[1] OZDEMIR M K,ARSLAN H.Channel estimation for wireless OFDM systems[J].IEEE Communication Surveys and Tutorials,2007,9(2):18-48.
[2] 樊同亮.OFDM的信道估计和信号均衡技术的研究[D].重庆:重庆大学,2012:36-41.
[3] 石磊,郭宝龙,李平,等.一种低复杂度LMMSE信道估计算法[J].西安电子科技大学学报(自然科学版),2012,39(2):24-28,50.
[4] HOUDA K,MALEK B,FAROUK O M.Low rank MMSE channel estimation in MIMO-OFDM systems: Innovative computing technology[C]//Second International Conference on INTECH.Casablanca:IEEE Press,2012:279-284.
[5] 李双志,张磊,张建康,等.一种新的多址信道有效阶数估计算法[J].电讯技术,2014,54(1):84-88.
[6] TOMASONI A,GATTI D,BELLINI S,et al.Efficient OFDM channel estimation via an information criterion[J].Transactions on Wireless Communications,2013,12(3):1352-1362.
[7] 郭士旭,郭军利,蒋建中.一种改进的基于秩检测的信道有效阶数估计算法[J].信息工程大学学报,2012,13(5):552-557.
[8] 石钧.OFDM无线通信系统信道估计及自适应算法的研究[D].北京:北京邮电大学,2012:26-28.
[9] TU Chaocheng,BENOIT C.Subspace-based blind channel estimation for MIMO-OFDM systems with reduced time averaging[J].Transactions on Vehicular Technology,2010,59(3):1539-1544.
[10] 张贤达.矩阵分析与应用[M].2版.北京:清华大学出版社,2004:453-579.
[11] 居敏.OFDM系统信道估计技术的研究[D].南京:南京航空航天大学,2008:26-29.
[12] RAYRA D,LOURENCO M,WILSON K,et al.Implementation aspects of adaptive window moving average filter applied to PLLs-Comparative study[C]//Power Electronics Conference(COBEP). Brazilian: IEEE Press, 2013:730-736.
[13] PETER S.Low-rank adaptive filters[J].Transactions on Signal Processing,1996,44(12):2932-2947.
[14] STROBACH P.Bi-iteration SVD subspace tracking algorithms[J].Transactions on Signal Processing,1997,45(5):1222-1240.

备注/Memo

备注/Memo:
收稿日期: 2014-07-02
通信作者: 谭鸽伟(1970-),女,讲师,博士,主要从事无线通信及SAR信号处理等的研究.E-mail:tangewei70@163.com.
基金项目: 福建省自然科学基金资助项目(2013J01242)
更新日期/Last Update: 2016-03-20