[1]阳琼芳,孙如祥.粒子群与遗传算法的混合算法[J].华侨大学学报(自然科学版),2015,36(6):645-649.[doi:10.11830/ISSN.1000-5013.2015.06.0645]
 YANG Qiongfang,SUN Ruxiang.Mixed Research on Particle Swarm Optimization and Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2015,36(6):645-649.[doi:10.11830/ISSN.1000-5013.2015.06.0645]
点击复制

粒子群与遗传算法的混合算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第6期
页码:
645-649
栏目:
出版日期:
2015-11-10

文章信息/Info

Title:
Mixed Research on Particle Swarm Optimization and Genetic Algorithm
文章编号:
1000-5013(2015)06-0645-05
作者:
阳琼芳1 孙如祥12
1. 广西职业技术学院 计算机与电子信息工程系, 广西 南宁 530226;2. 广西大学 计算机与电子信息学院, 广西 南宁 530004
Author(s):
YANG Qiongfang1 SUN Ruxiang12
1. Department of Computer and Electronic Information Engineering, Guangxi Vocational and Technical College, Nanning 530226, China; 2. College of Computer and Electronic Information, Guangxi University, Nanning 530004, China
关键词:
离散旅行商问题 遗传算法 粒子群算法 自适应 启发策略
Keywords:
genetic algorithm particle swarm optimization algorithm self-adaptive heuristic strategy
分类号:
TP302
DOI:
10.11830/ISSN.1000-5013.2015.06.0645
文献标志码:
A
摘要:
针对粒子群算法直接用于求解离散旅行商优化问题会存在诸多困难,通过分析粒子群算法、遗传算法各自优缺点,将粒子群算法、遗传算法有效结合组成混合算法用于求解离散旅行商问题.混合的目的在于保持两种算法各自的优点,并有效地避免各算法原有的不足.对3个不同规模的巡回旅行商问题进行实验,结果表明:混合算法提升了算法的局部搜索能力.
Abstract:
There are many difficulties when particle swarm optimization is used directly to solve discrete travelling salesman problem(TSP)optimization problems. Therefore, we analyze the advantages and disadvantages of particle swarm optimization algorithm and genetic algorithm, and then mix them to be an effective algorithm to solve discrete TSP. The purpose of combination is to keep the original advantages of the two kinds of algorithms and to avoid the existing deficiencies. We conduct some experiments on the 3 TSP problems different scales. The result shows that the hybrid algorithm can highly improve the local search ability of algorithm.

参考文献/References:

[1] 龚纯,王正林.精通Matlab最优化计算[M].北京:电子工业出版社,2009:270-272.
[2] 崔长彩,李兵,张认成.粒子群优化算法[J].华侨大学学报(自然科学版),2006,27(4):343-346.
[3] 付荣,居鹤华.基于粒子群优化的时间最优机械臂轨迹规划算法[J].信息与控制,2011,40(6):802-808.
[4] 潘文军,王健.基于改进遗传算法的食品召回中心选址研究[J].物流工程与管理,2014,12(36):53-55.
[5] 胡大伟,陈诚.遗传算法和禁忌搜索算法在配送中心选址和路线问题中的应用[J].系统工程理论与实践,2007(9):172-179.
[6] 付宝英,王启志.自适应粒子群优化BP神经网络的变压器故障诊断[J].华侨大学学报(自然科学版),2013,34(3):262-267.
[7] 蒋腾旭.改进的遗传蚁群混合算法在TSP中的应用[J].计算机与现代化,2013,12(220):31-33.
[8] 王晓霞,王涛.基于粒子群优化神经网络的变压器故障诊断[J].高电压技术,2008,24(11):2362-2367.
[9] 詹仕华,王长缨,钟一文.求解TSP问题的伪贪婪离散粒子群优化算法[J].小型微型计算机系统,2011,32(1):181-184.
[10] 赵远东,方正华.带有权重函数学习因子的粒子群算法[J].计算机应用,2013,33(8):2265-2268.
[11] WANG Kangping,HUANG Lan,ZHOU Chunguang.Particle swarm optimization for traveling salesman problem[C]//Proc of the 2nd International Conference on Machine Learning and Cybernetics Piscataway.Nanjing:IEEE Press,2003:1583-1585.
[12] 钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,6(6):89-94.
[13] 江中央,蔡自兴,王勇.求解全局优化问题的混合自适应正交遗传算法[J].软件学报,2010,21(6):1296-1307.
[14] 王秋芬,袁东锋,梁道雷.一种求解TSP的贪心遗传算法[J].制造自动化,2013,35(1):71-74.
[15] Andre Rohe.Forschungsinstitut für Diskrete athematik[DB/OL].[2015-10-05] .http://www.math.uwaterloo.ca/tsp/vlsi/index.html#XQF131.

相似文献/References:

[1]范慧琳.机器学习的若干方法分析[J].华侨大学学报(自然科学版),1995,16(1):116.[doi:10.11830/ISSN.1000-5013.1995.01.0116]
 Fan Huilin.An Analysis of Several Methods of Machine Learning[J].Journal of Huaqiao University(Natural Science),1995,16(6):116.[doi:10.11830/ISSN.1000-5013.1995.01.0116]
[2]郑力新.采用遗传算法的模拟集成电路参数最优设计[J].华侨大学学报(自然科学版),1998,19(2):128.[doi:10.11830/ISSN.1000-5013.1998.02.0128]
 Zheng Lixin.Parameter Optimization Design of Analog Integrated Circuit by Adopting Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),1998,19(6):128.[doi:10.11830/ISSN.1000-5013.1998.02.0128]
[3]周凯汀,郑力新.基于遗传算法的PID参数优化设计[J].华侨大学学报(自然科学版),2000,21(2):200.[doi:10.3969/j.issn.1000-5013.2000.02.022]
 Zhou Kaitin,Zheng Lixin.Optimization Design Based on Genetic Algorithm for Designing Parameters of PID controller[J].Journal of Huaqiao University(Natural Science),2000,21(6):200.[doi:10.3969/j.issn.1000-5013.2000.02.022]
[4]梅余霞,谢晓兰,万宁,等.木糖醇发酵液脱色的优化工艺[J].华侨大学学报(自然科学版),2000,21(4):394.[doi:10.3969/j.issn.1000-5013.2000.04.014]
 Mei Yuxia,Xie Xiaolan,Wan Ning,et al.Technology for Optimizing Decoloration of Xylitol Fermentation Liquor[J].Journal of Huaqiao University(Natural Science),2000,21(6):394.[doi:10.3969/j.issn.1000-5013.2000.04.014]
[5]任兴仑,童昕.压电智能梁振动控制的遗传算法优化设计[J].华侨大学学报(自然科学版),2002,23(1):81.[doi:10.3969/j.issn.1000-5013.2002.01.018]
 Ren Xinglun,Tong Xin.Optimal Control of Vibration Control of Piezoelectric Intelligent Beam Based on Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2002,23(6):81.[doi:10.3969/j.issn.1000-5013.2002.01.018]
[6]郑力新,黄东海,周凯汀.采用遗传算法实现时域模型降阶[J].华侨大学学报(自然科学版),2003,24(2):143.[doi:10.3969/j.issn.1000-5013.2003.02.006]
 Zheng Lixin,Huang Donghai,Zhou Kaiting.Realizing Reduction of Time Domain Model by Adopting Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2003,24(6):143.[doi:10.3969/j.issn.1000-5013.2003.02.006]
[7]徐玉野,王全凤,罗漪.摩擦耗能支撑参数优化[J].华侨大学学报(自然科学版),2004,25(1):45.[doi:10.3969/j.issn.1000-5013.2004.01.012]
 Xu Yuye,Wang Quanfeng,Luo Yi.Parameter Optimization with Frictional Energy Dissipation as a Brace[J].Journal of Huaqiao University(Natural Science),2004,25(6):45.[doi:10.3969/j.issn.1000-5013.2004.01.012]
[8]宋海洲.生产函数中参数估计方法的进一步改进[J].华侨大学学报(自然科学版),2005,26(1):23.[doi:10.3969/j.issn.1000-5013.2005.01.006]
 Song Haizhou.Further Improvement of the Method for Estimating Parameters in Production Function[J].Journal of Huaqiao University(Natural Science),2005,26(6):23.[doi:10.3969/j.issn.1000-5013.2005.01.006]
[9]方千山.模糊遗传算法的自适应PID控制器[J].华侨大学学报(自然科学版),2005,26(1):38.[doi:10.3969/j.issn.1000-5013.2005.01.010]
 Fang Qianshan.Adaptive PID Controller Based on Fuzzy Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2005,26(6):38.[doi:10.3969/j.issn.1000-5013.2005.01.010]
[10]周凯汀,郑力新.进化算法的PID参数最优设计[J].华侨大学学报(自然科学版),2005,26(1):85.[doi:10.3969/j.issn.1000-5013.2005.01.022]
 Zhou kaiting,Zheng Lixin.Optimal Design of PID Parameters by Evolution Algorithm[J].Journal of Huaqiao University(Natural Science),2005,26(6):85.[doi:10.3969/j.issn.1000-5013.2005.01.022]

备注/Memo

备注/Memo:
收稿日期: 2015-10-08
通信作者: 阳琼芳(1973-),女,副教授,主要从事农业信息化、计算机应用技术的研究.E-mail:459776040@qq.com.
基金项目: 广西高校科学技术研究项目(2013YB295)
更新日期/Last Update: 2015-11-20