参考文献/References:
[1] DONG B,TAO C,LEE S E.Applying support vector machines to predict building energy consumption in tropical region[J].Energy and Buildings,2005,37(5):545-553.
[2] KISSOCK J K.A methodology to measure retrofit energy savings in commercial buildings[D].Texas:Texas A&M University,1993:32-57.
[3] DHAR A,REDDY T A,CLARIDGE D E.A fourier series model to predict hourly heating and cooling energy use in commercial buildings with outdoor temperature as the only weather variable[J].Journal of Solar Energy Engineering,1999,121(1):47-53.
[4] DONG B,LEE S E,SAPAR M H.A holistic utility bill analysis method for baselining whole commercial building energy consumption in Singapore[J].Energy and building,2005,37(2):167-174.
[5] GUILLERMO E.New artificial neural network prediction method for electrical consumption forecasting based on building end-uses[J].Energy and building,2011,43(11):3112-3119.
[6] 方瑞明.支持向量机理论及其应用分析[M].北京:中国电力出版社,2007:15-19.
[7] 曾勍炜,徐知海,吴键.基于粒子群优化和支持向量机的电力负荷预测[J].微电子与计算机,20011,28(1):147-153.
[8] 王红瑞,刘晓红,唐奇,等.基于小波变换的支持向量机水文过程预测[J].清华大学学报:自然科学版,2010,50(9):1378-1381.
[9] 张华,郁永静,冯志军.基于小波分解与支持向量机的风速预测模型[J].水利发电学报,2012,31(1):208-212.
[10] 韩勇,李红梅.基于小波分解的支持向量机母线负荷预测[J].电力自动化设备,2012,32(4):88-91.
[11] 李元诚,方廷健,郑国祥.短期电力负荷预测的小波支持向量机方法研究[J].中国科学技术大学学报,2003,33(6):726-732.
[12] 梁颖,方瑞明.基于SCADA和支持向量回归的风电机组状态在线评估方法[J].电力系统自动化,2013,37(14):8-12.
[13] 付宝英,王启志.自适应粒子群优化BP神经网络的变压器故障诊断[J].华侨大学学报:自然科学版,2013,34(3):262-266.
[14] 路志英,李艳英,陆洁,等.粒子群算法优化RBF-SVM沙尘暴预报模型参数[J].天津大学学报,2008,41(4):413-418.
相似文献/References:
[1]康忠林,黄华灿.采用小波伪运动分解的车牌定位法[J].华侨大学学报(自然科学版),2008,29(3):360.[doi:10.11830/ISSN.1000-5013.2008.03.0360]
KANG Zhong-lin,HUANG Hua-can.The Orientation of License Plate Based on Wavelet False Movement Decomposition[J].Journal of Huaqiao University(Natural Science),2008,29(预先出版):360.[doi:10.11830/ISSN.1000-5013.2008.03.0360]
[2]杨屹洲,方瑞明,黄文权,等.应用小波变换和支持向量机的商业电力负荷预测[J].华侨大学学报(自然科学版),2015,36(2):142.[doi:10.11830/ISSN.1000-5013.2015.02.0142]
YANG Yi-zhou,FANG Rui-ming,HUANG Wen-quan,et al.Commercial Power Load Forecasting Using Wavelet Transform and SVM[J].Journal of Huaqiao University(Natural Science),2015,36(预先出版):142.[doi:10.11830/ISSN.1000-5013.2015.02.0142]