[1]李敬,程杰.Na+在环八肽纳米管中的传输[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 LI Jing,CHENG Jie.Na+ Transport in Cyclic Octa-Peptide Nanotube[J].Journal of Huaqiao University(Natural Science),2015,36(预先出版):0.
点击复制

Na+在环八肽纳米管中的传输
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年预先出版
页码:
0
栏目:
出版日期:
2027-07-30

文章信息/Info

Title:
Na+ Transport in Cyclic Octa-Peptide Nanotube
作者:
李敬 程杰
华侨大学 化工学院, 福建 厦门 361021
Author(s):
LI Jing CHENG Jie
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
环肽纳米管 跨膜离子通道 拉伸动力学 分子模拟 传输
Keywords:
cyclic peptide nanotubes transmembrane ion channels steered molecular dynamics molecular modeling transport
分类号:
TQ460.1
文献标志码:
A
摘要:
为了探究环肽纳米管介导离子和小分子物质的跨膜转运机制,以环八肽纳米管中Na+为模型,采用拉伸分子动力学方法,研究了Na+在自组装环八肽纳米管{cyclo[-(D-Ala-L-Ala-)4-]}10中的传输.Na+沿纳米管轴向拉力作用方向运动,在每个环平面波动较长时间,占据环中心位置,然后迅速通过环间,跃迁到下一环平面.研究结果表明:Na+以跳跃方式在环肽纳米管中传输的平均速度为0.837 m·s-1,其中在环平面的传输速度几乎为0,而在环间的瞬时传输速度可达350.8 m·s-1,平均传输速度为111.8 m·s-1.Na+在环肽纳米管内的环平面内受到阻力作用,在环间受到拉力作用.
Abstract:
In order to explore the mechanisms of cyclic peptide nanotube-mediated transmembrane transport of ions and small molecules, Na+ constrained in cyclic octa-peptide nanotube was selected as the model to investigate Na+ transport in the self-organized {cyclo[-(D-Ala-L-Ala-)4-]}10 peptide nanotube using steered molecular dynamics(SMD). Na+ moves along the pulling force direction which is parallel to the channel axis, and vibrates up and down at the center of every ring plane for a long time, then quickly jumps through the inter-ring to the next ring plane. The results show that in the jumping way Na+ transport through cyclic octa-peptide nanotube, the average transport rate is 0.837 m·s-1; the speed is almost zero at ring plane; while the instantaneous speed is up to 350.8 m·s-1 and the average rate is 111.8 m·s-1 between the middle planes. The force exerted on Na+ appears to be the resistance force at the ring plane and the pulling force between neighboring rings.

参考文献/References:

[1] GHADIRI M R,KOBAYASHI K,GRANJA J R.The structural and thermodynamic basis for the formation of self-assembled peptide nanotubes[J].Angewandte Chemie International Edition in English,1995,34(1):93-95.
[2] GRANJA J R,GHADIRI M R.Channel-mediated transport of glucose across lipid bilayers[J].Journal of the American Chemical Society,1994,116(23):10785-10786.
[3] De GROOT B L,Grubmüller H.Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF[J].Science,2001,294(5550):2353-2357.
[4] HWANG H,SCHATZ G C,RATNER M A.Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube[J].Journal of Physical Chemistry B,2006,110(51):26448-26460.
[5] CHENG Jie,ZHU Jing-chuan,LIU Bo.Molecular modeling investigation of adsorption of self-assembled peptide nanotube of cyclo-[(1R,3S)-γ-Acc-α-Phe]3 in CHCl3[J].Chemical Physics,2007,333(2/3):105-111.
[6] GHADIRI M R,GRANJA J R,BUEHLER L K.Artificial transmembrane ion channels from self-assembling peptide nanotubes[J].1994,369(6478):301-304.
[7] 刘健.环肽纳米管作为跨膜水通道[D].苏州:苏州大学,2011:301-304.
[8] VIJAYARAJ R,DAMME S V,BULTINCK P,et al.Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes[J].Phys Chem Chem Phys,2013,15(4):1260-1270.
[9] GHADIRI M R,GRANJA J R,MILLIGAN R A,et al.Self-assembling organic nanotubes based on a cyclic peptide architecture[J].Nature,1993,366(6453):324-325.
[10] AMORÍN M,GARCÍA-FANDIO R,GRANJA R.Transmembrane ion transport by self-assembling α, γ-peptide nanotubes[J].Chem Sci,2012,3(11):3280-3285.
[11] KIM H S,HARTGERINK J D,GHADIRI M R.Oriented self-assembly of cyclic peptide nanotubes in lipid memembranes[J].Journal of the American Chemical Society,1998,120(35):4417-4424.
[12] CHENG Jie,ZHU Jing-chuan,LIU Bo.Investigation of structures and properties of cyclic peptide nanotubes by experiment and molecular dynamics[J].J Comput Aided Mol Des,2008,22(11):773-781.
[13] CHENG Jie,ZHU Jing-chuan,LIU Bo.Structure of a self-assembled single nanotube of cyclo[(-D-Ala-L-Ala)4-][J].Molecular Simulation,2009,35(8):625-630.
[14] BURIAK J M,GHADIRI J R.Self-assembly of peptide based nanotubes[J].Materials Science and Engineering C,1997,4(4):207-212.
[15] BROOKS B R,BRUCCOLERI R E,OLAFSON B D.CHARMM: A program for macromolecular energy, minimization, and dynamics calculations[J].Comput Chem,1983,4(2):187-217.
[16] SAPAY N,TIELEMAN P D.Combination of the CHARMM27 force field with united-atom lipid force fields[J].Journal of Computational Chemistry,2011,32(7):1400-1410.
[17] KALE L,SKEEL R,BHANDARKAR M,et al.NAMD2: Greater scalability for parallel molecular dynamics[J].J Comput Phys,1999,151(1):283-312.
[18] HUMPHREY W,DALKE A,SCHULTEN K J.VMD-visual molecular dynamices[J].J Molec Graphics,1996,14(1):33-38.
[19] CHENG Jie,SHAN Song-Bo,WENG Lian-Jin.Molecular dynamics investigation of nanotube diameter and wall thickness of cyclic hexa-,Octa-,Deca- and Dodeca-Peptide[J].Journal of Computational and Theoretical Nanoscience,2013,10(6):1335-1337.
[20] TAKAHASHI R,WANG H,LEWIS J P.Electronic structures and conductivity in peptide nanotubes[J].J Phys Chem B,2007,111(30):9093-9098.
[21] QU Wen-wen,TAN Hong-wei,CHEN Guang-ju.The self-assembled of cyclic D, L-α-peptide systems: Insights into the structure and energetics[J].International Journal of Quantum Chemistry,2010,110(9):1648-1659.
[22] ROSENTHAL-AIZMAN K,SVENSSON G,UNDÉN A.Self-Assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues[J].American Chemical Society,2004,126(11):3372-3373.

相似文献/References:

[1]李敬,程杰.Na+在环八肽纳米管中的传输[J].华侨大学学报(自然科学版),2014,35(4):419.[doi:10.11830/ISSN.1000-5013.2014.04.0419]
 LI Jing,CHENG Jie.Na+ Transport in Cyclic Octa-Peptide Nanotube[J].Journal of Huaqiao University(Natural Science),2014,35(预先出版):419.[doi:10.11830/ISSN.1000-5013.2014.04.0419]

备注/Memo

备注/Memo:
收稿日期: 2013-07-17
通信作者: 程杰(1971-),女,讲师,主要从事药用纳米材料、模拟计算的研究.E-mail:chengj@hqu.edu.cn.
更新日期/Last Update: 1900-01-01