[1]李翔,刘韶涛.FP-Growth的并行加权关联规则挖掘算法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 LI Xiang,LIU Shao-tao.A Parallel Weighted Association Rule Mining Algorithm on FP-Growth[J].Journal of Huaqiao University(Natural Science),2015,36(预先出版):0.
点击复制

FP-Growth的并行加权关联规则挖掘算法
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年预先出版
页码:
0
栏目:
出版日期:
2027-07-30

文章信息/Info

Title:
A Parallel Weighted Association Rule Mining Algorithm on FP-Growth
作者:
李翔 刘韶涛
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
LI Xiang LIU Shao-tao
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
关联规则挖掘 并行加权 FP-Growth算法 MapReduce 加权频繁项集
Keywords:
association rule mining parallel weighted FP-Growth algorithm MapReduce weighted frequent items
分类号:
TP311
文献标志码:
A
摘要:
基于FP-Growth算法,提出一种并行加权的关联规则挖掘(PWARM)算法,证明其满足加权向下封闭性.使用MapReduce计算模型,在分布式集群中并行挖掘出关联规则.实验分析表明:该算法可以满足数据权重不同的需求,且在处理大数据集时能有效地提高挖掘的效率.
Abstract:
Proposeing a parallel weighted association rule mining(PWARM)algorithm on FP-Growth algorithm. Testified that the algorithm is satisfy weighted downward closure property, using MapReduce mining association rules in parallel in a distributed cluster. Experimental analysis shows that this algorithm can satisfy the demand of mining the data with different weight in the database, and in dealing with large data sets to speed up the efficiency of mining.

参考文献/References:

[1] AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules[C]//International Conference on Very Large Data Bases(VLDB 94).San Francisco: Morgan Kaufmann Publishers Inc,1994:487-499.
[2] HAN Jia-wei,PEI Jian,YIN Yi-wen,et al.Mining frequent patterns without candidate generation[C]//Data Mining and Knowledge Discovery.Hingham M A:Kluwer Academic Publishers,2000:53-87.
[3] CAI C H,ADA W C F,CHENGTAL C H.Mining association rules with weighted item[C]//Proc of International Symposium on Database.Washington D C:Engineering&Applications,1998:178-186.
[4] FENG Tao,MURTAGH F,FARID M.Weighted association rule mining using weighted support and significance framework[C]//Proc of 9ths ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.[S.I]:ACM Press,2003:661-666.
[5] 邹力鹍,张其善.基于多最小支持度的加权关联规则挖掘算法[J].北京航空航天大学学报,2007,33(5):590-593.
[6] CHEN Wen.Mining algorithm for weighted frequent pattern based on FP-tree[J].Computer Engineering,2012,38(6):24-27.
[7] PRAMUDIONO I,KITSUREGAWA M.Parallel FP-growth on PC cluster[C]//PAKDD.Heidelberg:Springer-Verlag Berlin,2003:141-144.
[8] ZAIANE O R,El-HAJJ M,LU Paul.Fast parallel association rule mining without candidacy generation[C]//ICDM.Washington D C:IEEE Computer Society,2001:21-26.
[9] ZHOU Le,Balanced parallel FP-Growth with MapReduce information computing and telecommunications[C]//2020 IEEE.New York:ACM Press,2008:243-246.
[10] LI Hao-yuan,WANG Yi,ZHANG Dong.Chang PFP: Parallel FP-growth for query recommendation[C]//ACM.New York:ACM Press,2008:107-114.

相似文献/References:

[1]李翔,刘韶涛.FP-Growth的并行加权关联规则挖掘算法[J].华侨大学学报(自然科学版),2014,35(5):523.[doi:10.11830/ISSN.1000-5013.2014.05.0523]
 LI Xiang,LIU Shao-tao.A Parallel Weighted Association Rule Mining Algorithm on FP-Growth[J].Journal of Huaqiao University(Natural Science),2014,35(预先出版):523.[doi:10.11830/ISSN.1000-5013.2014.05.0523]

备注/Memo

备注/Memo:
收稿日期: 2013-06-27
通信作者: 刘韶涛(1969-),男,副教授,主要从事软件体系结构与软件复用的研究.E-mail:shaotaol@hqu.edu.cn.
基金项目: 国务院侨办科研基金资助项目(09QZR02)
更新日期/Last Update: 1900-01-01