[1]王全义,邹黄辉.一类n阶非线性三点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2014,35(3):344-348.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
 WANG Quan-yi,ZOU Huang-hui.Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(3):344-348.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
点击复制

一类n阶非线性三点边值问题单调正解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第3期
页码:
344-348
栏目:
出版日期:
2014-05-16

文章信息/Info

Title:
Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems
文章编号:
1000-5013(2014)03-0344-05
作者:
王全义 邹黄辉
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Quan-yi ZOU Huang-hui
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
边值问题 单调正解 不动点定理
Keywords:
cone order boundary value problem monotone positive solution fixed-point theorem
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2014.03.0344
文献标志码:
A
摘要:
研究一类n阶非线性三点边值问题的单调正解的存在性.利用锥压缩锥拉伸不动点定理及分析技巧, 建立该边值问题存在一个单调正解的一些充分条件.所得结果推广并改进了ELOEPW等的研究结果.
Abstract:
In this paper, we study the existence on monotone positive solutions for a class of nth order nonlinear three-point boundary value problems. By employing the cone compression and extension fixed point theorem and some analytical skills, we establish some sufficient conditions which guarantee the existence of one monotone positive solution for the boundary value problems. Our results extend and improve some results made by ELOEPW etc.

参考文献/References:

[1] ELOE P W,AHMAD B.Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions[J].Appl Math Lett,2005,18(5):521-527.
[2] LIU Bing.Positive solutions of a nonlinear three-point boundary value problem[J].Comput Math Appl,2002,44(1/2):201-211.
[3] ZHAO Jun-fang,GE Wei-gao.A necessary and sufficient condition for the existence of positive solutions to a kind of singular three-point boundary value problem[J].Nonlinear Analysis,2009,71(9):3973-3980.
[4] KWONG M K,WONG J S W.Solvability of second-order nonlinear three-point boundary value problems[J].Nonlinear Analysis,2010,73(8):2342-2352.
[5] GUPTA C P.Solvability of three-point nonlinear boundary value problems for a second ordinary differential equation[J].J Math Anal Appl,1992,168(2): 540-551.
[6] SUN Yong-ping.Positive solutions of singular third-order three-point boundary value problems[J].J Math Anal Appl,2005,306(2):589-603.
[7] ZHANG Xue-mei, FENG Mei-qiang,GE Wei-gao.Multiple positive solutions for a class of m-point boundary value problems[J].Applied Mathematics Letters,2009,22(1):12-18.
[8] FENG Mei-qiang, GE Wei-gao. Existence results for a class of nth order m-point boundary value problems in banach spaces[J].Applied Mathematics Letters,2009,22(12):1303-1308.
[9] 邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报:自然科学版,2012,33(6):699-704.
[10] 郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002:286-330.

相似文献/References:

[1]曾文平.解两类特殊三对角线性方程组的修正追赶法[J].华侨大学学报(自然科学版),1984,5(2):20.[doi:10.11830/ISSN.1000-5013.1984.02.0020]
[2]梁学信,吴在德.一类退缩反应扩散方程解的有界性与衰减估计[J].华侨大学学报(自然科学版),1988,9(4):434.[doi:10.11830/ISSN.1000-5013.1988.04.0434]
 Liang Xuexin,Wu Zaide.The Boundedness and Decay Estimate of the Solutions for a Class Degenerate Reaction Diffusion Equations[J].Journal of Huaqiao University(Natural Science),1988,9(3):434.[doi:10.11830/ISSN.1000-5013.1988.04.0434]
[3]许国安,余赞平.具有转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2010,31(3):346.[doi:10.11830/ISSN.1000-5013.2010.03.0346]
 XU Guo-an,YU Zan-ping.Singular Perturbation of Second Order Quasilinear Boundary Value Problem with Turning Point[J].Journal of Huaqiao University(Natural Science),2010,31(3):346.[doi:10.11830/ISSN.1000-5013.2010.03.0346]
[4]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2011,32(6):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2011,32(3):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
[5]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[6]杨军,刘东利.高阶分数阶微分方程边值问题解的存在性[J].华侨大学学报(自然科学版),2013,34(6):716.[doi:10.11830/ISSN.1000-5013.2013.06.0716]
 YANG Jun,LIU Dong-li.Existence of Solutions for Boundary Value Problem of Fractional High-Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):716.[doi:10.11830/ISSN.1000-5013.2013.06.0716]
[7]王全义,邹黄辉.一类四阶奇异非线性积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2014,35(1):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]
 WANG Quan-yi,ZOU Huang-hui.Existence of Positive Solutions for a Class of Fourth-Order Singular Nonlinear Integral Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(3):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]
[8]许国安,余赞平.具有多个转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 XU Guo-an,YU Zan-ping.Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-turning Point[J].Journal of Huaqiao University(Natural Science),2015,36(3):0.
[9]许国安,余赞平.具有多个转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2014,35(4):472.[doi:10.11830/ISSN.1000-5013.2014.04.0472]
 XU Guo-an,YU Zan-ping.Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-Turning Point[J].Journal of Huaqiao University(Natural Science),2014,35(3):472.[doi:10.11830/ISSN.1000-5013.2014.04.0472]
[10]邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2012,33(6):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2012,33(3):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
[11]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
 CHEN Dong-xiao,CHEN Ying-sheng.Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(3):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]

备注/Memo

备注/Memo:
收稿日期: 2013-02-19
通信作者: 王全义(1955-),男,教授,主要从事常微分方程和泛函微分方程的研究.E-mail:wqy19555@163.com.
基金项目: 国家自然科学基金数学天元基金资助项目(11226145)
更新日期/Last Update: 2014-05-20