[1]吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344-348.[doi:10.11830/ISSN.1000-5013.2013.03.0344]
 WU Sheng,ZHUANG Qing-qu.Legendre-Petrov-Galerkin Spectral Element Method for Third-Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):344-348.[doi:10.11830/ISSN.1000-5013.2013.03.0344]
点击复制

三阶微分方程的Legendre-Petrov-Galerkin谱元方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第3期
页码:
344-348
栏目:
出版日期:
2013-05-20

文章信息/Info

Title:
Legendre-Petrov-Galerkin Spectral Element Method for Third-Order Differential Equations
文章编号:
1000-5013(2013)03-0344-05
作者:
吴胜 庄清渠
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WU Sheng ZHUANG Qing-qu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
三阶微分方程 Legendre-Petrov-Gelarkin谱元法 基函数 线性系统 数值实验
Keywords:
third-order differential equation Legendre-Petrov-Galerkin spectral-element method basis function linear system numberical experiments
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.2013.03.0344
文献标志码:
A
摘要:
针对建立在有限区间上的三阶微分方程,提出Legendre-Petrov- Galerkin谱元方法.通过构造满足试探函数空间和检验函数空间的基函数,得到离散问题所对应的稀疏的线性系统, 并对其进行求解. 数值例子验证了方法的有效性和高精度.
Abstract:
Legendre-Petrov-Galerkin spectral-element method(SEM)is proposed to solve the third-order equations on bounded domain. By constructing appropriate basis functions for the trial and test spaces, the coefficient matrix of the corresponding linear system is sparse, and the solution can be effectively solved. Numerical experiments are given to confirm the effectiveness and high-accuracy of the method.

参考文献/References:

[1] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods: Fundamentals in single domains[M].Berlin:Springer-Verlsg,2006:401-470.
[2] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M].Berlin:Springer-Verlsg,2007:237-357.
[3] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press of China,2006:183-298.
[4] KARNIADAKIS G,SHERWIN S J.Spectralhp element methods for computational fluid dynamics[M].London:Oxford University Press,2005:187-348.
[5] JOHN W,HILLIARD J E.Free energy of a nonuiform systerm I: Interfacial free energy[J].J Chem Phys,1958,28(2):258-267.
[6] MICHELSON D M,SIVASHINSKY G I.Nonlinear analysis of hydrodynamic instability in laminar flames-II: Numberical experiments[J].Acta Astronautica,1977,4(11/12):1207-1221.
[7] SIVASHINSKY G I.Nonlinear analysis of hydrodynamic instability in laminar flames-I dervation of basic equations[J].Acta Astronautica,1977,4(11/12):1177-1206.
[8] SHEN Ting-ting,XING Kang-zheng,MA He-ping.A legendre petrov-galerkin method for fourth-order differential equations[J].Computers and Mathematics with Applications,2011,61(1):8-16.
[9] ZHUANG Qing-qu.A legendre spectral-element method for the one-dimensional fourth-order equations[J].Appl Math Comput,2011,218(7):3587-3595.
[10] MA He-ping,SUN Wei-wei.A legendre-petrov-galerkin and chebyshev collocation method for third-order differential equations[J].SIAM Journal on Numberical Analysis,2000,38(5):1425-1438.
[11] SHEN Jie.A new dual-petrov-galerkin method for third and higher odd-order differential equations: Application to the KdV equation[J].SIAM Journal on Numberical Analysis,2004,41(5):1595-1619.
[12] ISMAIL M S.Numberical solution of compulex modified korteweg-de vries equation by petrov-galerkin method[J].Applied Mathematics and Computation,2008,202(2):520-531.
[13] SKOGESTED J O,KALISCH H.A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods[J].Mathematics and Computers in Simulation,2009,80(1):151-163.
[14] 王振华,马和平.三阶微分方程的多区域Legendre-Petrov-Galerkin谱方法[J].应用数学与计算数学学报,2011,25(1):11-19.

备注/Memo

备注/Memo:
收稿日期: 2012-04-14
通信作者: 庄清渠(1980-),男,讲师,主要从事微分方程数值解法的研究.E-mail:qqzhuang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11126330); 福建省自然科学基金资助项目(2011J05005)
更新日期/Last Update: 2013-05-20