[1]沈笑慧,张健,何熊熊.基于接收信号强度指示加权融合的定位算法[J].华侨大学学报(自然科学版),2012,33(6):635-639.[doi:10.11830/ISSN.1000-5013.2012.06.0635]
 SHEN Xiao-hui,ZHANG Jian,HE Xiong-xiong.Localization Algorithm Based on Received Signal Strength Indication Weighted Fusion[J].Journal of Huaqiao University(Natural Science),2012,33(6):635-639.[doi:10.11830/ISSN.1000-5013.2012.06.0635]
点击复制

基于接收信号强度指示加权融合的定位算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第6期
页码:
635-639
栏目:
出版日期:
2012-11-20

文章信息/Info

Title:
Localization Algorithm Based on Received Signal Strength Indication Weighted Fusion
文章编号:
1000-5013(2012)06-0635-05
作者:
沈笑慧 张健 何熊熊
浙江工业大学 信息工程学院, 浙江 杭州 310023
Author(s):
SHEN Xiao-hui ZHANG Jian HE Xiong-xiong
School of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
关键词:
接收信号强度指示 Kalman滤波 非视距误差 加权融合三边定位算法 无线传感器
Keywords:
received signal strength indicator Kalman filter non-line-of-sight error weighted trilateral localization algorithm wireless sensor network
分类号:
TP212.9;TN92
DOI:
10.11830/ISSN.1000-5013.2012.06.0635
文献标志码:
A
摘要:
基于接收信号强度指示的无线传感器网络定位问题,提出一种改进Kalman滤波方法,消除测距过程中的非视距误差,得到标签与节点间的估计距离.然后,分析标签与节点的距离、定位单元质量和标签所处的位置三方面对定位精度的影响,提出一种改进三边定位算法,并根据滤波后的估计距离计算得到的多个定位坐标进行加权融合.最后,通过Matlab仿真验证所提算法的有效性.
Abstract:
Based on the received signal strength indicator wireless sensor network location problem, the article puts forward an improved Kalman filtering method to obtain the evaluated distance between label and nodes through eliminating the non-line-of-sight error in the ranging process. Then, three effects on location accuracy are analysed, which are the distance between label and node, the quality of location unit and the position of label and an improved trilateral localization algorithm is proposed, in which weighted fusion of some position coordinates calculated by the filtered distance. Finally, the simulation is given to demonstrate the effectiveness of the proposed algorithm.

参考文献/References:

[1] 王久勇.基于RSSI的无线传感器网络定位算法的研究[D].南京: 南京航空航天大学,2009.
[2] HE Tian,HUANG Cheng-du,BIUM B M.Range-free localization schemes for large scale sensor networks[C]//9th Annual International Conference on Mobile Computing and Networking.New York:ACM,2003:81-95.
[3] BAHL P,PADMANABHAN V N.RADAR: An in-building RF-based user location and tracking system[C]//19th Annual Joint Conference of the IEEE Computer and Communications Societies.Tel Aviv:IEEE Press,2000:775-784.
[4] 郑君刚,马斌,吕晶.基于RSSI测距和距离几何约束的节点定位算法[J].电子产品世界,2010,17(5):27-29.
[5] 刘运杰,金明录,崔承毅. 基于RSSI的无线传感器网络修正加权质心定位算法[J].传感技术学报,2010,13(5):717-721.
[6] 陈昌祥,达维,周洁.基于RSSI的无线传感器网络距离修正定位算法[J].通信技术,2001,44(2):65-69.
[7] LE B L,AHMED K,TSUJI H.Mobile location estimator with NLOS mitigation using Kalman filtering[C]//IEEE Wireless Communications and Networking Conference.New Orleans:IEEE Press,2003:1969-1973.
[8] 邓自立.新息融合滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2007.
[9] 李静,刘琚.用卡尔曼滤波消除TOA中NLOS误差的三种方法[J].通信学报,2005,26(1):130-135.
[10] LATIFF L A,ALI A,OOI C C,et al.Development of an indoor GPS-free self-positioning system for mobile ad hoc network(MANET)[C]//IEEE International Conference on Jointly Held with the 2005 IEEE 7th Malaysia International Conference on Communication.Malaysia:IEEE Press,2005:1062-1067.
[11] YAN Xiao-yong,QIAN Huan-yan,HUANG Ya,et al.A high accuracy localization based on RSSI measurements[C]//International Conference on Consumer Electronics,Communications and Networks(CECNet).Xianning:IEEE Press,2011:1926-1929.
[12] SARRATE J,PALAU J,HUERTA A.Numerical representation of the quality measures of triangles and triangular meshes[J].Numerical Methods in Biomedical Engineering,2003,19(7):551-561.

相似文献/References:

[1]黄建新.Kalman滤波的人体运动位置跟踪算法[J].华侨大学学报(自然科学版),2003,24(3):254.[doi:10.3969/j.issn.1000-5013.2003.03.006]
 Huang Jianxin.A Tracking Algorithm Based on Kalman Filtraton for Tracking Kinematic Position of Human Body[J].Journal of Huaqiao University(Natural Science),2003,24(6):254.[doi:10.3969/j.issn.1000-5013.2003.03.006]

备注/Memo

备注/Memo:
收稿日期: 2012-06-15
通信作者: 何熊熊(1965-),男,教授,主要从事机器人、控制理论与应用、智能系统和信号处理等的研究.E-mail:hxx@zjut.edu.cn.
基金项目: 国家自然科学基金资助项目(61074054); 浙江省科技厅重大专项基金资助项目(2011C13011)
更新日期/Last Update: 2012-11-20