参考文献/References:
[1] QIN S J.Statistical process monitoring: Basics and beyond[J].Journal of Chemometrics,2003,17(8/9):480-502.
[2] 周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758.
[3] WISE B M,RICKER N L,VELTKAMP D F,et al.A theoretical basis for the use of principal component models for monitoring multivariate processes[J].Process Control and Quality,1990,1(1):41-51.
[4] DUNIA R,QIN S J.Joint diagnosis of process and sensor faults using principle component analysis[J].Control Engineering Practice,1998,6(4):457-469.
[5] WANG Hai-qing,SONG Zhi-huan,LI Ping.Fault detection behavior and performance analysis of PCA-based process monitoring methods[J].Ind Eng Chem Res,2002,41(10):2455-2464.
[6] MACGREGOR J F,JAECKLE C,KOPARISSIDES C,et al.Process monitoring and diagnosis by multiblock PLS methods[J].AIChE Journal,1994,40(5):826-838.
[7] CHOI S W,LEE I B.Multiblock PLS-based localized process diagnosis[J].Journal of Process Control,2005,15(3):295-306.
[8] CHEN Tao,SUN Yue.Probabilistic contribution analysis for statistical process monitoring: A missing variable approach[J].Control Engineering Practice,2009,17(4):469-477.
[9] WESTERHUIS J A,GURDEN S P,SMILDE A K.Generalized contribution plots in multivariate statistical process monitoring[J].Chemometrics and Intelligent Laboratory Systems,2000,51(1):95-114.
[10] DUNIA R,QIN S J.Subspace approach to multidimensional fault identification and reconstruction[J].AIChE Journal,1998,44(8):1813-1831.
[11] YUE H H,QIN S J.Reconstruction-based fault identification using a combined index[J].Industrial and Engineering Chemistry Research,2001,40(20):4403-4414.
[12] ALCALA C, QIN S J.Reconstruction-based contribution for process monitoring[J].Automatica,2009,45(7):1593-1600.
[13] KU W,STORER R H,GEORGAKIS C.Disturbance detection and isolation by dynamic principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.
[14] WANG Xun,KRUGER U,IRWIN G W,et al.Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis[J].IEEE Transactions on Control Systems Technology,2008,16(1):122-129.
[15] LI Y,KURFESS T R,LIANG S Y.Stochastic prognostics for rolling element bearings[J].Mechanical Systems and Signal Processing,2000,14(5):747-762.
[16] ZHAO Shi-jian,ZHANG Jie,XU Yong-mao.Monitoring of processes with multiple operating modes through multiple principle component analysis models[J].Industrial and Engineering Chemistry Research,2004,43(22):7025-7035.
[17] CHEN Jung-hui,LIU Jia-lin.Mixture principal component analysis models for process monitoring[J].Industrial and Engineering Chemistry Research,1999,38(4):1478-1488.
[18] BAKSHI B R.Multiscale PCA with application to multivariate statistical process monitoring[J].AIChE Journal,1998,44(7):1596-1610.
[19] QIN S J,VALLE S,PIOVOSO M J.On unifying multiblock analysis with application to decentralized process monitoring[J].Journal of Chemometrics,2001,15(9):715-742.
[20] NOMIKOS P,MACGREGOR J F.Monitoring batch processes using multiway principal component analysis[J].AIChE Journal,1994,40(8):1361-1375.
[21] LEE J M,YOO C K,LEE I B.Fault detection of batch processes using multiway kernel principal component analysis[J].Computers and Chemical Engineering,2004,28(9):1837-1847.
[22] CHOI S W,MORRIS J,LEE I B.Dynamic model-based batch process monitoring[J].Chemical Engineering Science,2008,63(3):622-636.
[23] DOAN X,SRINIVASAN R.Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control[J].Computers and Chemical Engineering,2008,32(1/2):230-243.
[24] YAO Yuan,GAO Fu-rong.A survey on multistage/multiphase statistical modeling methods for batch processes[J].Annual Reviews in Control,2009,33(2):172-183.
[25] YAO Yuan,GAO Fu-rong.Phase and transition based batch process modeling and online monitoring[J].Journal of Process Control,2009,19(5):816-826.
[26] WOLD H.Path models with latent variables: The NIPALS approach[M].Quantitative Sociology: International perspectives on mathematical and statistical modeling.New York:Academic Press,1975:307-357.
[27] MACGREGOR J F,JAECKLE C,KIPARISSIDES C,et al.Process monitoring and diagnosis by multiblock PLS methods[J].AIChE Journal,1994,40(5):826-838.
[28] KOURTI T,NOMIKOS P,MACGREGOR J F.Analysis,monitoring and fault diagnosis of batch processes using multiblock and multiway PLS[J].Journal of Process Control,1995,5(4):277-277.
[29] LI Gang,QIN Si-zhao,JI Yin-dong,et al.Total PLS based contribution plots for fault diagnosis[J].ACTA Automatica Sinica,2009,35(6):759-765.
[30] QIN S J,MCAVOY T J.Nonlinear PLS modeling using neural network[J].Computers and Chemical Engineering,1992,16(4):379-391.
[31] HELLAND K,BERNTSEN H E,BORGEN O,et al.Recursive algorithm for partial least squares regression[J].Chemometrics and intelligent laboratory systems,1992,14(1/2/3):129-137.
[32] ODGAARD P,LIN B,JORGENSEN S.Observer and data-driven-model-based fault detection in power plant coal mills[J].IEEE Transactions on Energy Conversion,2008,23(2):659-668.
[33] ZHAO Chun-hui,WANG Fu-li,MAO Zhi-zhong,et al.Improved batch process monitoring and quality prediction based on multiphase statistical analysis[J].Industrial and Engineering Chemistry Research,2008,47(3):835-849.
[34] YU Jie,QIN S J.Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J].AIChE Journal,2008,54(7):1811-1829.
[35] KRUGER U,DIMITRIADIS G.Diagnosis of process faults in chemical systems using a local partial least squares approach[J].AIChE Journal,2008,54(10):2581-2596.
[36] GE Zhi-qiang,SONG Zhi-huan.Online monitoring of nonlinear multiple mode processes based on adaptive local model approach[J].Control Engineering Practice,2008,16(12):1427-1437.
[37] ZHOU Dong-hua H,LI Gang,QIN S J.Total projection to latent structures for process monitoring[J].AIChE Journal,2010,56(1):168-178.
[38] KAMP M,TANAKA S,HASEBE S,et al.Monitoring independent components for fault detection[J].AIChE Journal,2003,49(4):969-976.
[39] LEE G,HAN C H,YOON E S.Multiple-fault diagnosis of the tennessee eastman process based on system decomposition and dynamic PLS[J].Industrial and Engineering Chemistry Research,2004,43(25):8037-8048.
[40] ZHANG Y,QIN S J.Fault detection of nonlinear processes using multiway kernel independent component analysis[J].Industrial and Engineering Chemistry Research,2007,46(23):7780-7787.
[41] LEE J M,QIN S J,LEE I B.Fault detection and diagnosis based on modified independent component analysis[J].AIChE Journal,2006,52(10):3501-3514.
[42] 周东华,李钢,李元.数据驱动的工业过程故障诊断技术:基于PCA与PLS的方法[M].北京:科学出版社,2011.
[43] ZHANG S,GANESAN R.Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery[J].Journal of Engineering for Gas Turbines and Power,1997,119(2):378-384.
[44] WANG Peng,VACHTSEVANOS G.Fault prognostics using dynamic wavelet neural networks[J].AI EDAM,2002,15(4):349-365.
[45] WANG W Q,GOLNARAGHI M F,ISMAIL F.Prognosis of machine health condition using neuro-fuzzy systems[J].Mechanical Systems and Signal Processing,2004,8(4):813-831.
[46] ZHANG Xiao-dong,XU R,KWAN C,et al.An integrated approach to bearing fault diagnostics and prognostics[C]//Proceedings of American Control Conference.Portland:IEEE Press,2005:2750-2755.
[47] DONG Ming,HE D.A segmental hidden semi-Markov model(HSMM)-based diagnostics and prognostics framework and methodology[J].Mechanical Systems and Signal Processing,2007,21(5):2248-2266.
[48] LI Gang,QIN S J,JI Yin-dong,et al.Reconstruction based fault prognosis for continuous processes[J].Control Engineering Practice,2010,18(1)):1211-1219.
[49] 马洁,徐小力,周东华.旋转机械的故障预测方法综述[J].自动化仪表,2011,32(8):1-3.
相似文献/References:
[1]冯远静,李良福,冯祖仁.粗糙集CMAC神经网络故障诊断策略[J].华侨大学学报(自然科学版),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
Feng Yuanjing,Li Liangfu,Feng Zuren.Rough Set-Based CMAC Neural Network for Fault Diagrosis[J].Journal of Huaqiao University(Natural Science),2004,25(6):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
[2]姚若苹,余尤好,陈培民,等.11相无刷励磁机故障工况的谐波分析[J].华侨大学学报(自然科学版),2007,28(2):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
YAO Ruo-ping,YU You-hao,CHEN Pei-ming,et al.Harmonic Analysis of the Fault Cases in 11-Phase Brushless Exciter Based on FFT[J].Journal of Huaqiao University(Natural Science),2007,28(6):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
[3]刘少谦,黄宜坚.应用时间序列分析的液压溢流阀故障诊断法[J].华侨大学学报(自然科学版),2007,28(3):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
LIU Shao-qian,HUANG Yi-jian.Fault Diagnosis of Hydraulic Relief Valve Using Time Series Analysis[J].Journal of Huaqiao University(Natural Science),2007,28(6):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
[4]蔡奇志,黄宜坚.三谱切片在调速阀故障诊断中的应用[J].华侨大学学报(自然科学版),2009,30(1):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
CAI Qi-zhi,HUANG Yi-jian.Fault Diagnosis of the Speed Control Valve Using the Slices of Trispectrum[J].Journal of Huaqiao University(Natural Science),2009,30(6):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
[5]蒋雨燕,黄宜坚.调速阀故障诊断的AR双谱定阶方法比较[J].华侨大学学报(自然科学版),2009,30(2):123.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
JIANG Yu-yan,HUANG Yi-jian.Comparison of Different Methods of Determining the Order of Autoregressive Bi-Spectrum[J].Journal of Huaqiao University(Natural Science),2009,30(6):123.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
[6]成琴,王启志.变压器油中溶解气体的智能诊断[J].华侨大学学报(自然科学版),2010,31(3):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
CHENG Qin,WANG Qi-zhi.Intelligent Diagnosis of Dissolved Gases in Transformer Oil[J].Journal of Huaqiao University(Natural Science),2010,31(6):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
[7]王理停,黄宜坚.关联维数的超声波电机故障诊断[J].华侨大学学报(自然科学版),2011,32(4):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
WANG Li-ting,HUANG Yi-jian.Fault Diagnosis of Ultrasonic Motor Based on Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2011,32(6):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
[8]高宇,黄宜坚.采用关联维的溢流阀故障诊断[J].华侨大学学报(自然科学版),2012,33(3):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
GAO Yu,HUANG Yi-jian.Fault Diagnosis of Relief Valve by Using Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2012,33(6):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
[9]张妮,田学民,蔡连芳.基于改进动态等距离映射的非线性动态故障诊断方法[J].华侨大学学报(自然科学版),2012,33(6):621.[doi:10.11830/ISSN.1000-5013.2012.06.0621]
ZHANG Ni,TIAN Xue-min,CAI Lian-fang.Nonlinear Dynamic Fault Diagnosis Method Based on Improved Isometric Mapping[J].Journal of Huaqiao University(Natural Science),2012,33(6):621.[doi:10.11830/ISSN.1000-5013.2012.06.0621]
[10]陈建灿,刘晓梅.AR双谱的电梯机械故障诊断[J].华侨大学学报(自然科学版),2013,34(3):258.[doi:10.11830/ISSN.1000-5013.2013.03.0258]
CHEN Jian-can,LIU Xiao-mei.AR Bispectrum in Fault Diagnosis of Elevator Machinery[J].Journal of Huaqiao University(Natural Science),2013,34(6):258.[doi:10.11830/ISSN.1000-5013.2013.03.0258]