参考文献/References:
[1] REMY W, TAYLOR T N, HAS H. Four hundred-million-year-old vesicular arbuscular mycorrhizae [J]. Proceedings of the National Academy of Sciences(USA), 1994, (25):11841-11843.doi:10.1073/pnas.91.25.11841.
[2] SMITH S E, READ D J. Mycorrhizal symbiosis [M]. San Diego:academic Press, 1997.
[3] BAIS H P, WEIR T L, PERRYL G. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006():233-266.doi:10.1146/annurev.arplant.57.032905.105159.
[4] GIOVANETTI M, SBRANA C, AVIO L. Differential hyphal morphogenesis in arbuscu[ar mycorrhizal fungi during pre-infection stages [J]. New Phytologist, 1993(3):587-593.doi:10.1111/j.1469-8137.1993.tb03907.x.
[5] 胡江, 孙淑斌, 徐国华. 植物中丛枝菌根形成的信号途径研究进展 [J]. 植物学通报, 2007(6):703-713.doi:10.3969/j.issn.1674-3466.2007.06.003.
[6] 朱先灿, 宋凤斌. 丛枝菌根共生的信号转导及其相关基因 [J]. 生命科学研究, 2008(2):95-99.
[7] BUEE M, ROSSIGNOL M, JAUNEAU A. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates [J]. Molecular Plant-Microbe Interactions, 2000(6):693-698.doi:10.1094/MPMI.2000.13.6.693.
[8] B(E)CARD G, TAYLOR L P, DOUDS D D. Flavonoids are not necessary plant signals in arbuscular mycorrhizal symbiosis [J]. Molecular Plant-Microbe Interactions, 1995(2):252-258.
[9] AKIYAMA K, MATSUZAKI K, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J]. Nature, 2005, (7043):824-827.
[10] MATUSOVA R, RANI K, VERSTAPPEN F W A. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp.are derived from the carotenoid pathway [J]. Plant Physiology, 2005(2):920-934.doi:10.1104/pp.105.061382.
[11] GOMEZ-ROLDAN V, ROUX C, GIRARD D. Strigolactones:Promising plant signals [J]. Plant Signaling & Behavior, 2007(3):163-165.
[12] LLANE A, GARCIA-GARRIDO J M, SAMPEDRO I. Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi [J]. Botany-Botanique, 2011(4):285-288.
[13] BESSERER A, PUECH-PAGES V, KIEFER P. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria [J]. Plos Biology, 2006(7):1239-1247.doi:10.1371/journal.pbio.0040226.
[14] BOUWMEESTER H J, ROUX C, L(O)PEZ-R(A)EZ J A. Rhizosphere communication of plants, parasitic plants and AM fungi [J]. Trends in Plant Science, 2007(5):224-230.doi:10.1016/j.tplants.2007.03.009.
[15] LOPEZ-RAEZ J A, CHARNIKHOVA T, FERNANDEZ I, el al. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato [J]. Journal of Plant Physiology, 2011(3):294-297.doi:10.1016/j.jplph.2010.08.011.
[16] GARCIA-GARRIDO J M, LENDZEMO V, CASTELLANOS-MORALES V. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi [J]. Mycorrhiza, 2009(7):449-459.doi:10.1007/s00572-009-0265-y.
[17] HARRISON M J. Signaling in the arbuscular mycorrhizal symbiosis [J]. Annual Review of Microbiology, 2005():19-42.doi:10.1146/annurev.micro.58.030603.123749.
[18] HAUSE B, FESTER T. Molecular and cell biology of arbuacularmycorrhizal symbiosis [J]. Plants, 2005(2):184-196.
[19] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses [J]. Plant Physiology, 2003(1):16-20.
[20] RAUSCH C, DARAM P, BRUNNER S. A phosphate transporter expressed in arbuscule-containing cells in potato [J]. Nature, 2001, (6862):462-466.doi:10.1038/35106601.
[21] NAGY R, KARANDASHOV V, CHAGUE V. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species [J]. Plant Journal, 2005(2):236-250.doi:10.1111/j.1365-313X.2005.02364.x.
[22] DRISSNER D, KUNZE G, CALLEWAERT N. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis [J]. Science, 2007, (5848):265-268.doi:10.1126/science.1146487.
[23] NAGY R, DRISSNER D, AMRHEIN N. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated [J]. New Phytologist, 2009(4):950-959.doi:10.1111/j.1469-8137.2008.02721.x.
[24] BUCHER M, WEGMUELLER S, DRISSNER D. Chasing the structures of small molecules in arbuscular mycorrhizal signaling [J]. Current Opinion in Plant Biology, 2009(4):500-507.doi:10.1016/j.pbi.2009.06.001.
[25] MUNNIK T. Phosphatidic acid:An emerging plant lipid second messenger [J]. Trends in Plant Science, 2001(5):227-233.doi:10.1016/S1360-1385(01)01918-5.
[26] VIEHWEGER K, SCHWARTZE W, SCHUMANN B. The G alpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in eschscholzia californica [J]. Plant Cell, 2006(6):1510-1523.
[27] GUTJAHR C, BANBA M, CROSET V. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway [J]. Plant Cell, 2008, (11):2989-3005.
[28] KHAN M H, MEGHVANSI M K, VIPIN P. Arbuscular mycorrhizal fungi-induced signaling in plant defence against phytopathogens [J]. Journal of Phytology, 2010(7):53-69.
[29] DEVOTO A, TURNER J G. Jasmomte-regulated Arabidopsis stress signalling network [J]. Physiologia Plantarum, 2005(2):161-172.doi:10.1111/j.1399-3054.2004.00418.x.
[30] LORENZO O, SOLANO R. Molecular players regulating the jasmonate signalling network [J]. Current Opinion in Plant Biology, 2005(5):532-540.
[31] HOHNJEC N, VIEWEG M F, P(U)HLER A. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza [J]. Plant Physiology, 2005(4):1283-1301.doi:10.1104/pp.104.056572.
[32] KAPOOR R. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid [J]. Online Journal of Biological Sciences, 2008(3):49-56.doi:10.3844/ojbsci.2008.49.56.
[33] COPETTA A, LINGUA G, BERTA G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L.var.Genovese [J]. Mycorrhiza, 2006(7):485-494.doi:10.1007/s00572-006-0065-6.
[34] KAPOOR R, CHAUDHARY V, BHATNAGAR A K. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L [J]. Mycorrhiza, 2006(7):581-587.
[35] TRAW M B, DAWSON T E. Differential induction of trichomes by three herbivores of black mustard [J]. Oecologia, 2002(4):526-532.doi:10.1007/s00442-002-0924-6.
[36] TRAW M B, KIM J, ENRIGHT S. Negative cross-talk between salicylate and jasmonate-mediated pathways in the wassilewskija ccotype of arabidopsis thaliana [J]. Molecular Ecology, 2003(5):1125-1135.doi:10.1046/j.1365-294X.2003.01815.x.
[37] HAMIDUZZAMAN M M, JAKAB G, BARNAVON L. Beta-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling [J]. Molecular Plant-Microbe Interactions, 2005(8):819-829.doi:10.1094/MPMI-18-0819.
[38] CORDIER C, POZO M J, BAREA J M. Cell defense responses associated with localized and systemic resistance to phytophthora induced in tomato by an arbuscular mycorrhizal fungus [J]. Molecular Plant-Microbe Interactions, 1998(9):1017-1028.
[39] LOAKE G, GRANT M. Salicylic acid in plant defence-the players and protagonists [J]. Current Opinion in Plant Biology, 2007(5):466-472.
[40] MALAMY J, HENNING J, KLESSIG D E. Temperature depended induction of salicylic acid and its conjugated during the resistance responses to tobacco mosaic virus infection [J]. Plant Cell, 1992(3):359-365.
[41] EL-KHALLAL S M. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid):1-changes in growth, some metabolic activities and endogenous hormones re-lated to defence mechanism [J]. Australian Journal of Basic and Applied Sciences, 2007(4):691-705.
[42] MEDINA M J H, GAGNON H, PICHE Y. Root colonization by arbuscular mycorrhizal fungi is affected by the sali-cylic acid content of the plant [J]. Plant Science, 2003(6):993-998.
[43] BLILOU I, OCAMPO J A, GARCiA-GARRIDO J M. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrrhizal fungus Glomus mosseae [J]. Journal of Experimental Botany, 2000.1969-1977.doi:10.1093/jexbot/51.353.1969.
[44] POZO M J, AZCON-AGUILAR C. Unraveling mycorrhiza-induced resistance [J]. Current Opinion in Plant, 2007(4):393-398.
[45] POZO M J, VAN LOON L C, PIETERSE C M J. Jasmonates-signals in plant-microbe interactions [J]. Journal of Plant Growth Regulation, 2004(3):211-222.
[46] GUTJAHR C, PASZKOWSKI U. Jasmonic acid and salicylic acid signaling in root-biotroph interactions [J]. Molecular Plant-Microbe Interactions, 2009(7):763-772.doi:10.1094/MPMI-22-7-0763.
[47] CAMPOS-SORIANO L, SEGUNDO B S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis [J]. Plant Signaling & Behavior, 2011(4):553-557.doi:10.4161/psb.6.4.14914.