[1]杨清文,徐玉野,郑涌林,等.含钢率对混凝土截面温度场分布的影响[J].华侨大学学报(自然科学版),2012,33(1):89-93.[doi:10.11830/ISSN.1000-5013.2012.01.0089]
 YANG Qing-wen,XU Yu-ye,ZHENG Yong-lin,et al.Influence of Steel Ratio on the Temperature Field Distribution of Concrete Section[J].Journal of Huaqiao University(Natural Science),2012,33(1):89-93.[doi:10.11830/ISSN.1000-5013.2012.01.0089]
点击复制

含钢率对混凝土截面温度场分布的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第1期
页码:
89-93
栏目:
出版日期:
2012-01-20

文章信息/Info

Title:
Influence of Steel Ratio on the Temperature Field Distribution of Concrete Section
文章编号:
1000-5013(2012)01-0089-05
作者:
杨清文徐玉野郑涌林罗漪
华侨大学土木工程学院
Author(s):
YANG Qing-wen XU Yu-ye ZHENG Yong-lin LUO Yi
College of Civil Engineering, Huaqiao University, Xiamen 361021, China
关键词:
混凝土 温度场 含钢率 影响规律 抗火性能
Keywords:
concrete temperature field steel ratio influence law fire behavior
分类号:
TU375.3
DOI:
10.11830/ISSN.1000-5013.2012.01.0089
文献标志码:
A
摘要:
将钢筋的圆形截面等效为面积相等的方形截面,采用四边形单元建立配置钢筋、型钢的混凝土截面的二维温度场分析模型,分析纵筋配筋率、型钢含钢率对混凝土截面温度场分布的影响.算例计算结果表明:钢筋对截面温度场分布计算结果影响较小,钢筋的存在使保护层内混凝土的温度降低,核心混凝土的温度升高,忽略钢筋对截面温度场分布的影响是合理的.型钢对截面温度场分布的计算结果影响较大,受火180min内混凝土截面内型钢翼缘中心处和截面形心处温度计算结果最大分别相差17.1℃和98.7℃; 高温下型钢混凝土构件的抗火性能研究中,需要考虑型钢对截面温度场分布的影响; 型钢混凝土构件火灾灾后性能评定中,核心型钢的力学性能可基本恢复.
Abstract:
The circular section of steel bar is equivalent to a square section with the same area,and the analytical model for two-dimensional temperature field of concrete section with steel bar or shaped steel was established using quadrangular element.Then the influence of the steel ratio of longitudinal reinforcement and shaped steel on the temperature field distribution was investigated.The results of numerical examples show that: the influence of reinforcement ratio on the temperature field distribution of concrete section is little and is neglectable.The temperature of cover concrete is decreased by reinforcement while that of core concrete is increased.The shaped steel ratio has great influence on the temperature field distribution of concrete section.When the fire exposure time is 112 min,the temperate differences at the center of flange and the centroid of cross section are 17.1 ℃ and 98.7 ℃,respectively.It is necessary to consider the influence of shaped steel on the temperature field distribution in the fire resistance analysis of steel reinforced concrete(SRC) members under elevated temperature.The mechanical behaviour of core shaped steel can mostly be recovered in the residual strength evaluation of SRC members.

参考文献/References:

[1] 吴波, 徐玉野. 高温下钢筋混凝土异形柱的数值分析方法 [J]. 土木工程学报, 2008(6):94-99, 106.
[2] 徐玉野, 王全凤, 柴振岭. 钢筋混凝土柱火灾试验数值模拟的关键技术 [J]. 华侨大学学报(自然科学版), 2008(4):588-592.
[3] 徐玉野, 王全凤, 邱政和. 典型受火方式下等肢T形柱的耐火性能 [J]. 华侨大学学报(自然科学版), 2010(2):218-223.
[4] 王振清, 朱大雷, 韩玉来. 火灾下钢筋混凝土结构热弹塑性变形分析 [J]. 土木建筑与环境工程, 2010(1):78-83.doi:10.3969/j.issn.1674-4764.2010.01.014.
[5] 郑永乾, 韩林海. 钢骨混凝土柱的耐火性能和抗火设计方法(Ⅰ) [J]. 建筑钢结构进展, 2006(2):22-29.doi:10.3969/j.issn.1671-9379.2006.02.003.
[6] 陆洲导, 徐朝晖. 火灾下钢骨混凝土柱温度场分析 [J]. 同济大学学报(自然科学版), 2004(9):1121-1125.doi:10.3321/j.issn:0253-374X.2004.09.001.
[7] 杜二峰, 毛小勇. 火灾下型钢混凝土柱三维温度场计算 [J]. 苏州科技学院学报(工程技术版), 2009(1):15-18.doi:10.3969/j.issn.1672-0679.2009.01.004.
[8] European Committee for Standardisation. Eurocode 3:Design of steel structures [S]. London..British Standards Institution, 1995.
[9] European Committee for Standardisation. Eurocode 2:Design of concrete structures [S]. London:British Standards Institution, 1995.
[10] 李毅海. 约束钢筋混凝土柱的抗火性能研究 [D]. 广州:华南理工大学, 2009.
[11] 王超. 不同受火方式下普通混凝土柱的耐火性能研究 [D]. 广州:华南理工大学, 2006.
[12] 张宏仁, 于飞. 火灾高温下轴心受压型钢混凝土柱的应力分析 [J]. 长春工程学院学报(自然科学版), 2010(1):9-12.doi:10.3969/j.issn.1009-8984.2010.01.003.

相似文献/References:

[1]张伯霖,庄有土,崔德昌.精密平面磨床热变形的研究[J].华侨大学学报(自然科学版),1985,6(1):57.[doi:10.11830/ISSN.1000-5013.1985.01.0057]
 Zhang Bolin,Zhuang Youtu,Cui Dechang.A Study on Thermal Deformation of Precision Surface Grinding Machine[J].Journal of Huaqiao University(Natural Science),1985,6(1):57.[doi:10.11830/ISSN.1000-5013.1985.01.0057]
[2]李易平,庄有土,张伯霖.用热管均衡机床大件的温度场[J].华侨大学学报(自然科学版),1991,12(1):9.[doi:10.11830/ISSN.1000-5013.1991.01.0009]
 Li Yipin,Zhuang Youtu,Zhang Bolin,et al.Equalizing the Temperature Field of Machine Tools by Heat Pipe[J].Journal of Huaqiao University(Natural Science),1991,12(1):9.[doi:10.11830/ISSN.1000-5013.1991.01.0009]
[3]曾家民.混凝土碳化对钢筋锈蚀的影响及防护措施探讨[J].华侨大学学报(自然科学版),1994,15(1):58.[doi:10.11830/ISSN.1000-5013.1994.01.0058]
 Zeng Jiamin.Effects of the Carbonization of Concrete on the Corrosion of Reinforcing Steel and Its Protective Measures[J].Journal of Huaqiao University(Natural Science),1994,15(1):58.[doi:10.11830/ISSN.1000-5013.1994.01.0058]
[4]庄其仁.激光焊接温度场解析计算[J].华侨大学学报(自然科学版),2001,22(3):247.[doi:10.3969/j.issn.1000-5013.2001.03.006]
 Zhuang Qiren.Analytic Calculation of Temperature Field Induced by Laser Welding[J].Journal of Huaqiao University(Natural Science),2001,22(1):247.[doi:10.3969/j.issn.1000-5013.2001.03.006]
[5]叶青,曾志兴.提高混凝土强度的技术经济分析[J].华侨大学学报(自然科学版),2002,23(1):56.[doi:10.3969/j.issn.1000-5013.2002.01.013]
 Ye Qing,Zeng Zhixing.Technical and Economical Analysis of Concrete for Promoting Its Strength[J].Journal of Huaqiao University(Natural Science),2002,23(1):56.[doi:10.3969/j.issn.1000-5013.2002.01.013]
[6]赵紫玉,方建成.熔射形成的陶瓷件制造技术[J].华侨大学学报(自然科学版),2006,27(2):180.[doi:10.3969/j.issn.1000-5013.2006.02.019]
 Zhao Ziyu,Fang Jiancheng.Ceramic Part Rapid Forming by Plasma Spraying[J].Journal of Huaqiao University(Natural Science),2006,27(1):180.[doi:10.3969/j.issn.1000-5013.2006.02.019]
[7]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
 LI Hao,SHI Yang-hang.Discussion of Concrete Carbonation Depth Predictive Models[J].Journal of Huaqiao University(Natural Science),2007,28(1):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
[8]徐玉野,王全凤,罗漪.混凝土矩形柱的耐火极限分析及实用计算[J].华侨大学学报(自然科学版),2008,29(2):284.[doi:10.11830/ISSN.1000-5013.2008.02.0284]
 XU Yu-ye,WANG Quan-feng,LUO Yi.Analysis and Practical Calculation for the Fire Resistance of Concrete Columns with Rectangular Cross Section[J].Journal of Huaqiao University(Natural Science),2008,29(1):284.[doi:10.11830/ISSN.1000-5013.2008.02.0284]
[9]施养杭,李浩.混凝土结构碳化寿命可靠度分析[J].华侨大学学报(自然科学版),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
 SHI Yang-hang,LI Hao.Reliability Analysis on Life of Carbonized Concrete Structure[J].Journal of Huaqiao University(Natural Science),2008,29(1):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
[10]刘晶峰.液态金属充型过程流动与传热数值模拟[J].华侨大学学报(自然科学版),2012,33(2):121.[doi:10.11830/ISSN.1000-5013.2012.02.0121]
 LIU Jing-feng.Numerical Simulation on Fluid Flow and Heat Transfer during Mold Filling of Liquid Metal[J].Journal of Huaqiao University(Natural Science),2012,33(1):121.[doi:10.11830/ISSN.1000-5013.2012.02.0121]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(50908091); 中国博士后科研基金面上项目(20100480756); 福建省自然科学基金资助项目(2009J01256); 亚热带建筑科学国家重点实验室开放课题(2009KB18); 福建省高校杰出青年科研人才培育计划项目(JA10005); 国务院侨办科研基金资助项目(10QZR09); 华侨大学基本科研业务费专项基金资助项目(JB-SJ1011)
更新日期/Last Update: 2014-03-23