[1]陈威,缑锦.采用Haar小波与Gabor小波特征的级联式人脸检测方法[J].华侨大学学报(自然科学版),2011,32(5):520-524.[doi:10.11830/ISSN.1000-5013.2011.05.0520]
 CHEN Wei,GOU Jin.A Novel Face Detection Method Based on Haar and Gabor Features[J].Journal of Huaqiao University(Natural Science),2011,32(5):520-524.[doi:10.11830/ISSN.1000-5013.2011.05.0520]
点击复制

采用Haar小波与Gabor小波特征的级联式人脸检测方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第5期
页码:
520-524
栏目:
出版日期:
2011-09-20

文章信息/Info

Title:
A Novel Face Detection Method Based on Haar and Gabor Features
文章编号:
1000-5013(2011)05-0520-05
作者:
陈威缑锦
华侨大学计算机科学与技术学院
Author(s):
CHEN Wei GOU Jin
College of Computer Science & Technology, Huaqiao University, Quanzhou 362021, China
关键词:
人脸检测 AdaBoost算法 Haar小波 Gabor小波 分类器
Keywords:
face detection AdaBoost algorithm Haar wavelet Gabor wavelet classifier
分类号:
TP391.41
DOI:
10.11830/ISSN.1000-5013.2011.05.0520
文献标志码:
A
摘要:
研究Gabor小波的构造及其特点,将其与AdaBoost算法相结合,优化原算法的性能.提取的Gabor特征对应到指定滤波器的指定采样点上,只需取这些指定采样点的一个领域内的图像与指定滤波器进行卷积,而不需要将整个图像与整个滤波器组进行卷积,可大大降低计算量提高运算速度.最后,通过算法对特征进行筛选,得到迭代误差率较低的特征来构建强分类器.
Abstract:
The paper has studied the structure and its characteristics of wavelet Gabor,by means of combining the AdaBoost algorithm to optimize the performance of the original algorithm.Because the extracted Gabor characteristics are corresponding to the designated sampling points,the proposed algorithm only need to get the convolution of specified filters and some images in some domains with these designated sample points,instead of getting the convolution with the entire images and the whole filter groups,which can greatly reduce convolution and improve the speed calculation.Finally,the algorithm can get the characteristics of lower iteration error rate to construct strong classifier through the choosing and culling.

参考文献/References:

[1] ROWLEY H, BALUJA S, KANADE T. Neural network-based face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998(1):23-38.doi:10.1109/34.655647.
[2] VIOLA P, JONES M. Robust real-time object detection [A]. IEEE, 2001.1-3.
[3] LI S Z, ZHANG Zhen-qiu. FloatBoost learning and statistical face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004(9):1112-1123.doi:10.1109/TPAMI.2004.68.
[4] XIAO Rong, LI Ming-jing, ZHANG Hong-jiang Zhang. Robust multipose face detection in images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004(1):31-41.doi:10.1109/TCSVT.2003.818351.
[5] WISKOTT L, FELLOUS J M, KRUGER N. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997(7):775-779.doi:10.1109/34.598235.
[6] HUANG Lin-lin, SHIMIZU A, KOBATAKE H. Classification-based face detection using Gabor filter features [A]. Seoul, Korea, 2004.397-402.
[7] PAPAGEORGIOU C, OREN M, POGGIO T. A general framework for object detection [A]. Bombay, India, 1998.
[8] LIENHART R, MAYDT J. An extended set of Haar-iike features for rapid object detection [A]. IEEE, 2002.900-903.
[9] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [A]. IEEE, 2001.511-518.
[10] LADES M, VORBRIIGGEN J C, BUHNARNN J. Distortion in variant object recogition in the dynamic link architecture [J]. IEEE Transactions on Computer, 1993(3):300-311.doi:10.1109/12.210173.
[11] VIOLA P, JONES M. Robust real-time face detection [J]. International Journal of Computer Vision, 2004(2):137-154.doi:10.1023/B:VISI.0000013087.49260.fb.

相似文献/References:

[1]陈丽枫,王佳斌,郑力新.采用HOG特征和机器学习的行人检测方法[J].华侨大学学报(自然科学版),2018,39(5):768.[doi:10.11830/ISSN.1000-5013.201612041]
 CHEN Lifeng,WANG Jiabin,ZHENG Lixin.Pedestrian Detection Using HOG Feature and Machine Learning[J].Journal of Huaqiao University(Natural Science),2018,39(5):768.[doi:10.11830/ISSN.1000-5013.201612041]
[2]陈齐松,陈锻生.多信息融合的实时人脸检测算法[J].华侨大学学报(自然科学版),2006,27(2):205.[doi:10.3969/j.issn.1000-5013.2006.02.025]
 Chen Qisong,Chen Duansheng.Real Time Face Detection Algorithm Based on Multi-Information Fusion[J].Journal of Huaqiao University(Natural Science),2006,27(5):205.[doi:10.3969/j.issn.1000-5013.2006.02.025]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目(09HZRH)
更新日期/Last Update: 2014-03-23