[1]刘燕,王全义.具有脉冲和时滞合作系统的正周期解存在性[J].华侨大学学报(自然科学版),2010,31(6):697-702.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
 LIU Yan,WANG Quan-yi.Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(6):697-702.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
点击复制

具有脉冲和时滞合作系统的正周期解存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第6期
页码:
697-702
栏目:
出版日期:
2010-11-20

文章信息/Info

Title:
Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays
文章编号:
1000-5013(2010)06-0697-06
作者:
刘燕王全义
华侨大学数学科学学院
Author(s):
LIU Yan WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
时滞 脉冲 周期解 重合度理论
Keywords:
time delay impulse positive periodic solutions coincidence degree theory
分类号:
O175.14
DOI:
10.11830/ISSN.1000-5013.2010.06.0697
文献标志码:
A
摘要:
利用重合度理论和一些分析技巧,研究一类具有脉冲和时滞的合作系统,得到该系统存在正周期解的结果.结果表明,具有脉冲和时滞的合作系统,在满足一定的充分条件,该系统至少存在一个正周期解.
Abstract:
In this paper,by means of some analysis techniques and the continuation theorem of coincidence degree theory,we study a class of mutualism systems with impulses and delays.The existence of positive periodic solutions for the systems is proved.The result expresses that,under some sufficient conditions,there exists at least a positive periodic solution for the system.

参考文献/References:

[1] LI Yong-kun. On a periodic mutualism model [J]. Australian & New Zealand Industrial and Applied Mathematics Journal, 2001(4):569-580.
[2] LI Yong-kun. Positive periodic solutions for an integrodifferential model of mutualism [J]. Applied Mathematics Letters, 2001(5):525-530.doi:10.1016/S0893-9659(00)00188-9.
[3] 汪东树, 王全义. 一类具时滞和比率的扩散系统的正周期解 [J]. 华侨大学学报(自然科学版), 2006(4):358-361.doi:10.3969/j.issn.1000-5013.2006.04.006.
[4] 黄爱梅. 一类种群时滞合作系统的持久性 [J]. 福州大学学报(自然科学版), 2007(4):499-501.doi:10.3969/j.issn.1000-2243.2007.04.004.
[5] CUI Jin-gan, CHEN Lan-sun. Global asymptoticstability in a nonautonomous cooperative system [J]. Journal of Systems Science and Mathematical Science, 1993(1):44-51.
[6] SUN Shu-lin, CHEN Lan-sun. Existence of positive periodic solution of an impulsive delay Logistic model [J]. Applied Mathematics and Computation, 2007(2):617-623.doi:10.1016/j.amc.2006.06.060.
[7] GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. Beilin:Springer-Verlag, 1977.40-60.

相似文献/References:

[1]郑灿民,陈金涛.HD83—02智能电话机[J].华侨大学学报(自然科学版),1986,7(1):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
 Zheng Canmin,Chen Jintao.HD83—02 Intelligent Telephone[J].Journal of Huaqiao University(Natural Science),1986,7(6):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
[2]潘金火.一种步进电动机恒流驱动电路[J].华侨大学学报(自然科学版),1988,9(4):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
 Pan Jinhuo.A Circuit for Driving the Stepmotor with Constant Current[J].Journal of Huaqiao University(Natural Science),1988,9(6):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
[3]林建华.方块脉冲函数在一般型泛函变分近似解法中的应用[J].华侨大学学报(自然科学版),1990,11(1):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
 Lin Jianhua.The Application of Block-Pulse Functions in Approximate Solution of Variations with General Types of Functional[J].Journal of Huaqiao University(Natural Science),1990,11(6):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
[4]汪东树,王全义.一类具时滞和比率的扩散系统正周期解[J].华侨大学学报(自然科学版),2006,27(4):358.[doi:10.3969/j.issn.1000-5013.2006.04.006]
 Wang Dongshu,Wang Quanyi.Existence of Periodic Solution for Predator-Prey Diffusive System of Two Species with Time Delay and Ratio[J].Journal of Huaqiao University(Natural Science),2006,27(6):358.[doi:10.3969/j.issn.1000-5013.2006.04.006]
[5]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(6):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[6]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(6):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[7]吴丽娇,王全义.具有脉冲的一阶非线性微分方程边值问题的正解[J].华侨大学学报(自然科学版),2012,33(3):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
 WU Li-jiao,WANG Quan-yi.Positive Solutions of Boundary Value Problems for Nonlinear First Order Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(6):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
[8]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(6):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[9]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(6):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[10]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2015,36(6):0.
[11]陈应生,汪东树.脉冲时滞Lotka-Volterra食物链系统的正周期解[J].华侨大学学报(自然科学版),2012,33(2):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
 CHEN Ying-sheng,WANG Dong-shu.Positive Periodic Solutions of a Lotka-Volterra Food-Chain System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2012,33(6):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2014-03-23