[1]许建文,刘斌.注塑件体积收缩率变化的数值模拟优化与预报[J].华侨大学学报(自然科学版),2010,31(3):241-245.[doi:10.11830/ISSN.1000-5013.2010.03.0241]
 XU Jian-wen,LIU Bin.Optimization and Forecast of Numerical Simulation of Volumetric Shrinkage Variation for Injection Molding Products[J].Journal of Huaqiao University(Natural Science),2010,31(3):241-245.[doi:10.11830/ISSN.1000-5013.2010.03.0241]
点击复制

注塑件体积收缩率变化的数值模拟优化与预报()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第3期
页码:
241-245
栏目:
出版日期:
2010-05-20

文章信息/Info

Title:
Optimization and Forecast of Numerical Simulation of Volumetric Shrinkage Variation for Injection Molding Products
文章编号:
1000-5013(2010)03-0241-05
作者:
许建文刘斌
华侨大学机电及自动化学院
Author(s):
XU Jian-wen LIU Bin
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
注塑件 体积收缩率 Moldflow 田口方法 BP神经网络
Keywords:
injection molding product volumetric shrinkage variation Moldflow Taguchi method back propagation neural network
分类号:
TQ320.66
DOI:
10.11830/ISSN.1000-5013.2010.03.0241
文献标志码:
A
摘要:
运用Moldflow分析软件,结合田口方法的实验设计,对注塑成型过程进行数值模拟计算,得到各个工艺参数对体积收缩率变化的影响次序及最优化的工艺参数组合.利用BP(Back Propagation)人工神经网络对注塑件的体积收缩率的变化进行预测,以最优化的工艺参数组合为基准,通过微调各个工艺参数来安排正交实验,并将结果作为神经网络的样本数据.经过训练后的神经网络能够准确地预测体积收缩率的变化,从而达到以较少的试验实现注塑成型工艺的优化与控制.
Abstract:
The influence order of each process parameter on volumetric shrinkage variation of injection molding products and optimum process parameters can be obtained by numerical simulation and calculation of injection molding process with combination of experimental design of Taguchi method and Moldflow software.The volumetric shrinkage variation of injection molding products is predicted by back propagation neural network,in which the arrangement of orthogonal trials by adjusting each process parameter is made on the basis of optimum process parameters and the experimental results are used as the sample data of neural network.The trained neutral network can accurately predict the volumetric shrinkage variation so that the optimization and control of injection molding process could be achieved using fewer experiments.

参考文献/References:

[1] 王利霞, 杨杨, 王蓓. 注塑成型工艺参数对制品体收缩率变化的影响及工艺参数优化 [J]. 高分子材料科学与工程, 2004(3):173-176.doi:10.3321/j.issn:1000-7555.2004.02.046.
[2] 祝铁丽, 王敏杰. 注塑成形制品收缩过程的数值模拟 [J]. 机械工程学报, 2002(9):145-149.doi:10.3321/j.issn:0577-6686.2002.09.032.
[3] MONTGOMERY D C. Design and analysis of experiments [M]. New York:John Wiley and Sons, Inc, 1997.
[4] 张云波, 胡云昌. 人工神经网络的建设工期定客户地域分类 [J]. 华侨大学学报(自然科学版), 2004(3):270-274.doi:10.3969/j.issn.1000-5013.2004.03.012.
[5] 飞思科技产品研发中心. 神经网络理论与MATLAB 7实现 [M]. 北京:电子工业出版社, 2005.
[6] 陈桂明, 戚红雨, 潘伟. MATLAB 数理统计(6.x) [M]. 北京:北京科学技术出版社, 2002.
[7] 王利霞, 张娜, 申长雨. 应用Taguchi实验设计法最小化注塑成型制品沉降斑 [J]. 塑料工业, 2004(4):26-28.doi:10.3321/j.issn:1005-5770.2004.04.010.

相似文献/References:

[1]陈芬莲,邓诗赞.注塑件质量分析[J].华侨大学学报(自然科学版),1992,13(4):534.[doi:10.11830/ISSN.1000-5013.1992.04.0534]
 Chen Fenlian,Deng Shizan.Quality Analysis of the Parts made by Injection Moulding[J].Journal of Huaqiao University(Natural Science),1992,13(3):534.[doi:10.11830/ISSN.1000-5013.1992.04.0534]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(E0810040); 福建省青年创新基金资助项目(2004J033)
更新日期/Last Update: 2014-03-23