[1]王宪,何园,郑盛华.褐藻对电镀废水中Au2+,Ag+,Cu2+,Ni2+生物吸附-解吸作用[J].华侨大学学报(自然科学版),2008,29(1):22-25.[doi:10.11830/ISSN.1000-5013.2008.01.0022]
 WANG Xian,HE Yuan,ZHENG Sheng-hua.Biosorption and Desorption of Au2+,Ag+,Cu2+ and Ni2+ from Electroplating Wastewater by Brown Algae Laminaria japonica[J].Journal of Huaqiao University(Natural Science),2008,29(1):22-25.[doi:10.11830/ISSN.1000-5013.2008.01.0022]
点击复制

褐藻对电镀废水中Au2+,Ag+,Cu2+,Ni2+生物吸附-解吸作用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第29卷
期数:
2008年第1期
页码:
22-25
栏目:
出版日期:
2008-01-20

文章信息/Info

Title:
Biosorption and Desorption of Au2+,Ag+,Cu2+ and Ni2+ from Electroplating Wastewater by Brown Algae Laminaria japonica
文章编号:
1000-5013(2008)01-0022-04
作者:
王宪何园郑盛华
厦门大学海洋与环境学院; 厦门大学海洋与环境学院 福建厦门361005; 福建厦门361005
Author(s):
WANG Xian HE Yuan ZHENG Sheng-hua
College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China
关键词:
褐藻 生物吸附-解吸 动力学 电镀废水 Au2+ Ag+ Cu2+ Ni2+
Keywords:
Laminaria japonica biosorption-desorption kinetics electroplating wastewater Au(2+) Ag+ Cu(2+) Ni(2+)
分类号:
X703
DOI:
10.11830/ISSN.1000-5013.2008.01.0022
文献标志码:
A
摘要:
研究电镀废水中金属离子Au2+,Ag+,Cu2+,Ni2+在褐藻(Laminaria japonica)上的生物吸附-解吸动力学.研究结果表明,Au2+,Ag+,Cu2+,Ni2+在藻粉上的生物吸附可以分为2个阶段.第1阶段为物理吸附,在10 min内快速达到平衡,其吸附过程可很好地用准二级动力学方程来描述,准二级速率常数(k2)分别为0.110 6,0.381 8,0.458 9,2.691 2 g.(mg.min)-1,平衡时吸附量(qe)分别为2.52,0.54,2.46,8.62 mg.g-1.Au2+,Ag+,Cu2+,Ni2+在藻粉上的生物解吸过程与吸附的过程相似,也可以很好地用准二级动力学方程来描述,其动力学参数(k2)分别为10.650 8,4.926 4,0.655 6,0.031 2 g.(mg.min)-1,吸附量(qe)分别为0.20,0.07,0.84,29.41 mg.g-1.Laminaria japonica可用于处理电镀废水和废水中贵重金属的回收.
Abstract:
The kinetics on biosorption and desorption of metal ions(Au(2+),Ag+,Cu(2+) and Ni(2+)) by brown algae Laminaria japonica is discussed in this paper.The kinetic experiments showed that the process of equilibrium had two steps,the first step was physical adsorption and reached equilibrium quickly, in less than 10 min.The biosorption kinetics followed the pseudo-second order model.The pseudo-second order rate constant(k2) was obtained as 0.110 6,0.381 8,0.458 9 and 2.691 2 g·(mg·min)(-1) for Au(2+),Ag+,Cu(2+) and Ni(2+),respectively.The balanced sorption capacity(qe) was 2.52,0.54,2.46 and 8.62 mg·g(-1) for Au(2+),Ag+,Cu(2+) and Ni(2+),respectively.Desorption experiments was similar with sorption.The pseudo-second order rate constant(k2) for Au(2+),Ag+,Cu(2+) and Ni(2+) was found to be 10.650 8,4.926 4,0.655 6 and 0.031 2 g·(mg·min)(-1),the sorption capacity(qe) was received as 0.20,0.07,0.84 and 29.41 mg·g(-1),respectively.Laminaria japonica can be used as an efficient biosorbent material for the removal and recovery of heavy metal from electroplating wastewater.

参考文献/References:

[1] 白滢, 常青. 高分子重金属絮凝剂处理电镀废水研究 [J]. 中国给水排水, 2006, (19):53-55.doi:10.3321/j.issn:1000-4602.2006.19.015.
[2] 代秀兰. 微电解技术处理含铬电镀废水研究及其应用 [J]. 工业水处理, 2005(1):69-71.doi:10.3969/j.issn.1005-829X.2005.01.022.
[3] CODE F, PEHLIVAN E. Removal of Cr(Ⅵ) from aqueous solution by two Lewatit-anion exchange resins [J]. Journal of Hazardous Materials, 2005, (1-3):175-182.doi:10.1016/j.jhazmat.2004.12.004.
[4] HU Jing, CHAN Guo-hua, LOLI M C. Removal and recovery of Cr(Ⅵ) from wastewater by maghemite anoparti-cles [J]. Water Research, 2005, (18):4528-4536.doi:10.1016/j.watres.2005.05.051.
[5] QIN Jian-jun, WAI M N, OO M H. A feasibility study on the treatment and recycling of a wastewater from metal plating [J]. Journal of Membrane Science, 2002, (1-2):213-221.doi:10.1016/S0376-7388(02)00263-6.
[6] 青志鹏, 黄瑞敏, 王章霞. 微生物法处理电镀废水的进展 [J]. 电镀与精饰, 2007(3):21-24.doi:10.3969/j.issn.1001-3849.2007.03.007.
[7] 李福德, 谭红, 安慕晖. 微生物净化电镀铬废水的研究 [J]. 应用生态学报, 1993(4):430-435.
[8] WONG J P K, WOMG Y S, TAM N F Y. Nickel biosorption by two chlorella species C.vulgaris (a commercial species) and C.miniata (a local isolate) [J]. BIORESOURCE TECHNOLOGY, 2000, (2):133-137.doi:10.1016/S0960-8524(99)00175-3.
[9] FENG D, ALDRICH C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima [J]. HYDROMETALLURGY, 2004, (1/2):1-10.doi:10.1016/S0304-386X(03)00138-5.
[10] KADUKOVA J, VIRCKOVA E. Comparison of differences between copper accumulation and biosorption [J]. Environmental International, 2005.227-232.
[11] CHEN Xin-cai, WANG Yuan-peng, LIN Qi. Biosorption of copper (Ⅱ) and zinc (Ⅱ) from aqueous solution by Pseudomonas putida CZI [J]. Colloids and Surfaces B:Biointerfaces, 2005.101-107.
[12] YAN Guang-yu, VIRARAGHAVAN T. Heavy-metal removal from aqueoussolution by fungus Mucor rouxii [J]. Water Research, 2003.4486-4496.
[13] PADMAVATHY V, VASUDEVAN P, DHINGRA S C. Biosorption of nickel(Ⅱ) ions on Baker’s yeast [J]. Process Biochemistry, 2003, (10):1389-1395.doi:10.1016/S0032-9592(02)00168-1.
[14] AL-SARAJ M, ABDEL-LATIF M S, EL-NAHAL L. Bioaccumulation of some hazardous metals by sol-gel entrapped microorganisms [J]. Journal of Non-Crystalline Solids, 1999, (2/3):137-140.
[15] MIRETZKY P, SARALEGUI A, CIRELLI A F. Simultaneous heavy metal removal mechanism by dead macro-phytes [J]. Chemosphere, 2006.247-254.doi:10.1016/j.chemosphere.2005.05.010.
[16] 郜瑞莹, 王建龙. Ni2+生物吸附动力学及吸附平衡研究 [J]. 环境科学, 2007, (10):2315-2319.doi:10.3321/j.issn:0250-3301.2007.10.028.

备注/Memo

备注/Memo:
福建省自然科学基金计划资助项目(D0610020); 福建省重大前期专项基金资助项目(2005HZ1014)
更新日期/Last Update: 2014-03-23