[1]刘少谦,黄宜坚.应用时间序列分析的液压溢流阀故障诊断法[J].华侨大学学报(自然科学版),2007,28(3):228-231.[doi:10.3969/j.issn.1000-5013.2007.03.002]
 LIU Shao-qian,HUANG Yi-jian.Fault Diagnosis of Hydraulic Relief Valve Using Time Series Analysis[J].Journal of Huaqiao University(Natural Science),2007,28(3):228-231.[doi:10.3969/j.issn.1000-5013.2007.03.002]
点击复制

应用时间序列分析的液压溢流阀故障诊断法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第3期
页码:
228-231
栏目:
出版日期:
2007-07-20

文章信息/Info

Title:
Fault Diagnosis of Hydraulic Relief Valve Using Time Series Analysis
文章编号:
1000-5013(2007)03-0228-04
作者:
刘少谦黄宜坚
华侨大学机电及自动化学院; 华侨大学机电及自动化学院 福建泉州362021; 福建泉州362021
Author(s):
LIU Shao-qian HUANG Yi-jian
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
溢流阀 故障诊断 时间序列 频谱分析
Keywords:
relief valve fault diagnosis time series spectral analysis
分类号:
TH165.3
DOI:
10.3969/j.issn.1000-5013.2007.03.002
文献标志码:
A
摘要:
基于液压溢流阀体工况,提出一种振动频率特性的故障诊断方法.利用溢流阀体振动信号的相关性、自回归模型的参数和功率谱特性,获得故障的突变信息,从而确认溢流阀的工作状态,为液压系统故障的诊断提供判断依据.测试系统采用LabVIEW虚拟仪器构建,并通过计算机自动完成测试和分析.实验结果表明,正常状态和故障状态下的电压信号没有明显的趋势,是一种平稳时间序列; 有故障时,相关函数衰减比正常状态慢,但都不够明显; 正常状态和故障状态下的特征根分布明显不同,故障状态下的系统可能处于某种稳定状态; 正常状态的自回归(AR)功率谱比任何一种溢流阀常见故障的功率谱都低.
Abstract:
In this paper,a fault diagnosis method for hydraulic relief valve has been put forward according to their vibration frequency characteristics.Using the correlation analysis,the parameters and spectra of a time series model of the vibrant signals from the relief valve,the abrupt change informations can be obtained.Therefore the fault conditions of the relief valve can be confirmed and the decision support is provided for the fault diagnosis of hydraulic relief valve.The experiment and diagnosis process based on virtual instruments LabVIEW are automatically controlled by computer in this paper.The experiment shows that voltage signals on normal and fault states are a steady time series which have no apparent tendency; the correlated functions on fault states attenuate more slowly than one on normal state,but they are not pretty apparent; the distributions of characteristic roots are obviously different between normal and fault states; the system on fault states may be in a stable condition; auto-regressive(AR) power spectrum curve on normal state is different from other fault states of hydraulic relief valve.

参考文献/References:

[1] 羊拯民, 张成宝. 时序分析在汽车变速箱齿轮故障诊断中的应用 [J]. 农业机械学报, 2000(3):92-95.doi:10.3969/j.issn.1000-1298.2000.03.026.
[2] 张仕海, 朱建元. 集装箱吊前大梁振动的时间序列分析与故障诊断 [J]. 上海海事大学学报, 2004(4):1-3.doi:10.3969/j.issn.1672-9498.2004.04.001.
[3] WANG Feng-lin, MECHEFSKE C K. Adaptive modelling of transient vibration signals [J]. Mechanical Systems and Signal Processing, 2006(4):825-842.doi:10.1016/j.ymssp.2004.12.004.
[4] LENNART L. System identification [M]. New Jersey:PTR Prenticl Hall, 1989.
[5] 杨叔子, 吴雅. 时间序列分析的工程应用 [M]. 武汉:华中理工大学出版社, 1991.255-256, 353.
[6] REHORN A G, SEJDIC E, JIANG Jin. Fault diagnosis in machine tools using selective regional correlation [J]. Mechanical Systems and Signal Processing, 2006.1221-1238.
[7] 张旭东, 陆明泉. 离散随机信号处理 [M]. 北京:清华大学出版社, 2005.156-157.

相似文献/References:

[1]冯远静,李良福,冯祖仁.粗糙集CMAC神经网络故障诊断策略[J].华侨大学学报(自然科学版),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
 Feng Yuanjing,Li Liangfu,Feng Zuren.Rough Set-Based CMAC Neural Network for Fault Diagrosis[J].Journal of Huaqiao University(Natural Science),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
[2]姚若苹,余尤好,陈培民,等.11相无刷励磁机故障工况的谐波分析[J].华侨大学学报(自然科学版),2007,28(2):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
 YAO Ruo-ping,YU You-hao,CHEN Pei-ming,et al.Harmonic Analysis of the Fault Cases in 11-Phase Brushless Exciter Based on FFT[J].Journal of Huaqiao University(Natural Science),2007,28(3):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
[3]蔡奇志,黄宜坚.三谱切片在调速阀故障诊断中的应用[J].华侨大学学报(自然科学版),2009,30(1):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
 CAI Qi-zhi,HUANG Yi-jian.Fault Diagnosis of the Speed Control Valve Using the Slices of Trispectrum[J].Journal of Huaqiao University(Natural Science),2009,30(3):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
[4]蒋雨燕,黄宜坚.调速阀故障诊断的AR双谱定阶方法比较[J].华侨大学学报(自然科学版),2009,30(2):123.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
 JIANG Yu-yan,HUANG Yi-jian.Comparison of Different Methods of Determining the Order of Autoregressive Bi-Spectrum[J].Journal of Huaqiao University(Natural Science),2009,30(3):123.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
[5]成琴,王启志.变压器油中溶解气体的智能诊断[J].华侨大学学报(自然科学版),2010,31(3):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
 CHENG Qin,WANG Qi-zhi.Intelligent Diagnosis of Dissolved Gases in Transformer Oil[J].Journal of Huaqiao University(Natural Science),2010,31(3):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
[6]王理停,黄宜坚.关联维数的超声波电机故障诊断[J].华侨大学学报(自然科学版),2011,32(4):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
 WANG Li-ting,HUANG Yi-jian.Fault Diagnosis of Ultrasonic Motor Based on Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2011,32(3):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
[7]马洁,党爱民,李刚,等.基于MSPM的故障诊断技术研究现状与展望[J].华侨大学学报(自然科学版),2012,33(6):601.[doi:10.11830/ISSN.1000-5013.2012.06.0601]
 MA Jie,DANG Ai-min,LI Gang,et al.Research Status and Prospect of Fault Diagnosis Technology Based on MSPM[J].Journal of Huaqiao University(Natural Science),2012,33(3):601.[doi:10.11830/ISSN.1000-5013.2012.06.0601]
[8]张妮,田学民,蔡连芳.基于改进动态等距离映射的非线性动态故障诊断方法[J].华侨大学学报(自然科学版),2012,33(6):621.[doi:10.11830/ISSN.1000-5013.2012.06.0621]
 ZHANG Ni,TIAN Xue-min,CAI Lian-fang.Nonlinear Dynamic Fault Diagnosis Method Based on Improved Isometric Mapping[J].Journal of Huaqiao University(Natural Science),2012,33(3):621.[doi:10.11830/ISSN.1000-5013.2012.06.0621]
[9]陈建灿,刘晓梅.AR双谱的电梯机械故障诊断[J].华侨大学学报(自然科学版),2013,34(3):258.[doi:10.11830/ISSN.1000-5013.2013.03.0258]
 CHEN Jian-can,LIU Xiao-mei.AR Bispectrum in Fault Diagnosis of Elevator Machinery[J].Journal of Huaqiao University(Natural Science),2013,34(3):258.[doi:10.11830/ISSN.1000-5013.2013.03.0258]
[10]付宝英,王启志.自适应粒子群优化BP神经网络的变压器故障诊断[J].华侨大学学报(自然科学版),2013,34(3):262.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
 FU Bao-ying,WANG Qi-zhi.Transformer Fault Diagnosis of Adaptive Particle SwarmOptimization BP Neural Network[J].Journal of Huaqiao University(Natural Science),2013,34(3):262.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
[11]高宇,黄宜坚.采用关联维的溢流阀故障诊断[J].华侨大学学报(自然科学版),2012,33(3):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
 GAO Yu,HUANG Yi-jian.Fault Diagnosis of Relief Valve by Using Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2012,33(3):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]

备注/Memo

备注/Memo:
福建省高新技术计划重点项目(2005H035)
更新日期/Last Update: 2014-03-23