[1]张光亚,葛慧华,方柏山.一种预测木聚糖酶最适温度的PCANN模型[J].华侨大学学报(自然科学版),2007,28(1):55-58.[doi:10.3969/j.issn.1000-5013.2007.01.015]
 ZHANG Guang-ya,GE Hui-hua,FANG Bai-shan.A Principal Component-Artificial Neural Network Model for Predicting Optimum Temperature in F/10 Xylanases[J].Journal of Huaqiao University(Natural Science),2007,28(1):55-58.[doi:10.3969/j.issn.1000-5013.2007.01.015]
点击复制

一种预测木聚糖酶最适温度的PCANN模型()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第1期
页码:
55-58
栏目:
出版日期:
2007-01-20

文章信息/Info

Title:
A Principal Component-Artificial Neural Network Model for Predicting Optimum Temperature in F/10 Xylanases
文章编号:
1000-5013(2007)01-0055-04
作者:
张光亚葛慧华方柏山
华侨大学材料科学与工程学院; 华侨大学材料科学与工程学院 福建泉州362021; 福建泉州362021
Author(s):
ZHANG Guang-ya GE Hui-hua FANG Bai-shan
College of Material Science and Engineering, Huaqiao University, 362021, Quanzhou, China
关键词:
主成分分析 BP神经网络 木聚糖酶 最适温度 虚拟筛选
Keywords:
principal component analysis BP neural networks xylanase optimum temperature virtual screening
分类号:
Q55
DOI:
10.3969/j.issn.1000-5013.2007.01.015
文献标志码:
A
摘要:
采用主成分分析法对样本数据集进行预处理,将得到的新样本数据集输入神经网络,构建F/10家族木聚糖酶氨基酸组成和最适温度的主成分分析神经网络(PCANN)模型.结果表明,当学习速率为0.07、动态参数为0.8、Sigmoid参数为0.96,隐含层结点数为5时,模型对温度拟合的平均绝对百分比误差为4.97%,绝对误差为3.03℃.同时,方法具有良好的预测效果,预测的平均绝对百分比误差为4.68%,平均绝对误差为3.55℃.
Abstract:
The principal component analysis was first applied to the data processing in training sets,and then the obtained new principal components were used as input parameters of BP neural networks.A prediction model for optimum temperature of xylanases in F/10 family was established based on uniform design.When the learning rate,momentum parameter,Sigmoid parameter and the neuron numbers of the hidden layer was 0.07,0.8,0.96 and 5,respectively,the calculated temperatures fitted the reported optimum temperatures very well.The mean absolute percent error was 4.97%.At the same time,the predicted temperatures fitted the reported optimum temperatures well and the mean absolute error was 3.55 ℃.It was superior in fittings and predictions compared to the reported model based on stepwise regression.

参考文献/References:

[1] ANDREAS S, JEAN H J. Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round [J]. Analytical Biochemistry, 2004.285-291.
[2] LIU Xiang-mei, QU Yin-bo, FAN Yin. Studies on the key amino acid residues responsible for the alkali-tolerance of the xylanase by site-directed or random mutagenesis [J]. J Mol Catal B:Enzymatic, 2002, (4-6):307-313.doi:10.1016/S1381-1177(02)00111-X.
[3] 徐卉芳, 张先恩, 张治平. 大肠杆菌碱性磷酸酶的体外定向进化研究 [J]. 生物化学与生物物理进展, 2003(1):181-186.doi:10.3321/j.issn:1000-3282.2003.01.017.
[4] VOIGT C A, KAUFFMAN S, WANG Zhen-gang. Rational evolutionary design:The theory of in vitro protein evolution [J]. Advances In Protein Chemistry, 2001.79-160.doi:10.1016/S0065-3233(01)55003-2.
[5] ROBERT J H, JORG B, MARIE L A. Combining computational and experimental screening for rapid optimization of protein properties [J]. Proceedings of the National Academy of Sciences(USA), 2002.15926-15931.
[6] VOIGT C A, MAYO S L, ARNOLD F H. Computational method to reduce the search space for directed protein evolution [J]. Proceedings of the National Academy of Sciences(USA), 2001, (7):3778-3783.doi:10.1073/pnas.051614498.
[7] RICHARD F, AJOY R, SRIDHAR G. Optimizing the search algorithm for protein engineering by directed evolution [J]. Protein Engineering, 2003(8):589-597.doi:10.1093/protein/gzg077.
[8] LIU Liang-wei, WANG Mei-li, SHAO Wei-lan. A novel model to determine the dipeptides responsible for optimum temperature in F/10 xylanase [J]. Process Biochemistry, 2005(3):1389-1394.doi:10.1016/j.procbio.2004.06.003.
[9] 方开泰. 均匀设计与均匀设计表 [M]. 北京:科学出版社, 1994.363-372.
[10] LIU Liang-wei, ZHANG Jing, CHEN Bin. Principle component analysis in F/10 and G/11 xylanase [J]. Biochemical and Biophysical Research Communications, 2004(1):277-280.doi:10.1016/j.bbrc.2004.07.116.

相似文献/References:

[1]杨冠鲁,李元杰.神经网络SNC无刷柴油发电机励磁控制器[J].华侨大学学报(自然科学版),2001,22(3):317.[doi:10.3969/j.issn.1000-5013.2001.03.021]
 Yang Guanlu,Li Yuanjie.Exciting Controller of Brushless Diesel Generator Based on BP Neural Network[J].Journal of Huaqiao University(Natural Science),2001,22(1):317.[doi:10.3969/j.issn.1000-5013.2001.03.021]
[2]张光亚,方柏山.木聚糖酶氨基酸组成与最适温度的模型[J].华侨大学学报(自然科学版),2005,26(2):191.[doi:10.3969/j.issn.1000-5013.2005.02.021]
 Zhang Guangya,Fang Baishan.A Model for Amino Acid Composition and Optimum Temperature in F/10 Xylanase[J].Journal of Huaqiao University(Natural Science),2005,26(1):191.[doi:10.3969/j.issn.1000-5013.2005.02.021]
[3]涂帆,常方强.BP神经网络预测水泥搅拌桩单桩承载力[J].华侨大学学报(自然科学版),2007,28(1):68.[doi:10.3969/j.issn.1000-5013.2007.01.018]
 TU Fan,CHANG Fang-qiang.The Method of BP Neural Network Predicting the Bearing Capacity of Single Cement Mixing Pile[J].Journal of Huaqiao University(Natural Science),2007,28(1):68.[doi:10.3969/j.issn.1000-5013.2007.01.018]
[4]许建文,刘斌.注塑件体积收缩率变化的数值模拟优化与预报[J].华侨大学学报(自然科学版),2010,31(3):241.[doi:10.11830/ISSN.1000-5013.2010.03.0241]
 XU Jian-wen,LIU Bin.Optimization and Forecast of Numerical Simulation of Volumetric Shrinkage Variation for Injection Molding Products[J].Journal of Huaqiao University(Natural Science),2010,31(1):241.[doi:10.11830/ISSN.1000-5013.2010.03.0241]
[5]黄凯宗,张光亚.使用伪氨基酸组成和BP神经网络预测类弹性蛋白多肽的相变温度[J].华侨大学学报(自然科学版),2011,32(2):194.[doi:10.11830/ISSN.1000-5013.2011.02.0194]
 HUANG Kai-zong,ZHANG Guang-ya.Using Pseudo-Amino Acid Composition and BP Neural Network to Predict the Transition Temperature of Elastin-Like Peptides[J].Journal of Huaqiao University(Natural Science),2011,32(1):194.[doi:10.11830/ISSN.1000-5013.2011.02.0194]
[6]李平,周博.双容水箱的神经PID控制[J].华侨大学学报(自然科学版),2012,33(6):608.[doi:10.11830/ISSN.1000-5013.2012.06.0608]
 LI Ping,ZHOU Bo.PID Control Based on Neural Networks in Double-Tank System[J].Journal of Huaqiao University(Natural Science),2012,33(1):608.[doi:10.11830/ISSN.1000-5013.2012.06.0608]
[7]付宝英,王启志.自适应粒子群优化BP神经网络的变压器故障诊断[J].华侨大学学报(自然科学版),2013,34(3):262.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
 FU Bao-ying,WANG Qi-zhi.Transformer Fault Diagnosis of Adaptive Particle SwarmOptimization BP Neural Network[J].Journal of Huaqiao University(Natural Science),2013,34(1):262.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
[8]杨洋,李钟慎,范伟.高精度数据采集系统定时器的仿真分析[J].华侨大学学报(自然科学版),2013,34(6):610.[doi:10.11830/ISSN.1000-5013.2013.06.0610]
 YANG Yang,LI Zhong-shen,FAN Wei.Simulation Analysis of High-Precision Data Acquisition System with Timers[J].Journal of Huaqiao University(Natural Science),2013,34(1):610.[doi:10.11830/ISSN.1000-5013.2013.06.0610]
[9]林源清,张光亚.G/11木聚糖酶最适pH值的预测及其与氨基酸位置的关系[J].华侨大学学报(自然科学版),2014,35(3):316.[doi:10.11830/ISSN.1000-5013.2014.03.0316]
 LIN Yuan-qing,ZHANG Guang-ya.Prediction of Optimum pH of G/11 Xylanases and the Relationship between the Location of Amino Acid and Optimum pH Value[J].Journal of Huaqiao University(Natural Science),2014,35(1):316.[doi:10.11830/ISSN.1000-5013.2014.03.0316]
[10]余路.电信客户流失的组合预测模型[J].华侨大学学报(自然科学版),2016,37(5):637.[doi:10.11830/ISSN.1000-5013.201605022]
 YU Lu.Combination Forecasting Model of Customer Churns in Telecom Industry[J].Journal of Huaqiao University(Natural Science),2016,37(1):637.[doi:10.11830/ISSN.1000-5013.201605022]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(05Q0018)
更新日期/Last Update: 2014-03-23