[1]陈齐松,陈锻生.多信息融合的实时人脸检测算法[J].华侨大学学报(自然科学版),2006,27(2):205-208.[doi:10.3969/j.issn.1000-5013.2006.02.025]
 Chen Qisong,Chen Duansheng.Real Time Face Detection Algorithm Based on Multi-Information Fusion[J].Journal of Huaqiao University(Natural Science),2006,27(2):205-208.[doi:10.3969/j.issn.1000-5013.2006.02.025]
点击复制

多信息融合的实时人脸检测算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第2期
页码:
205-208
栏目:
出版日期:
2006-04-20

文章信息/Info

Title:
Real Time Face Detection Algorithm Based on Multi-Information Fusion
文章编号:
1000-5013(2006)02-0205-04
作者:
陈齐松陈锻生
华侨大学信息科学与工程学院; 华侨大学信息科学与工程学院 福建 泉州 362021; 福建 泉州 362021
Author(s):
Chen Qisong Chen Duansheng
College of Information Science and Engineering, Huaqiao University, 362021, Quanzhou, China
关键词:
人脸检测 类Haar特征 多信息融合 Adaboost算法 级联分类器
Keywords:
face detection Haar-like feature multi-information fusion adaboost algorithm cascade classifier
分类号:
TP391.41
DOI:
10.3969/j.issn.1000-5013.2006.02.025
文献标志码:
A
摘要:
提出一种综合使用灰度、梯度和肤色信息的实时人脸检测方法,使用类Haar特征描述人脸模式的灰度差、梯度差和肤色差,构造相应的特征集.用AdaBoost算法从特征集中学习区分人脸与非人脸模式的有效规则,构成人脸检测级联分类器.实验表明,综合使用多信息的人脸检测器性能,比单独使用灰度信息的检测器有显著的提高.
Abstract:
In this paper, we put forward a method of real time face detection that using gray level, gradient and skin color information. Haar-like features describing the differences of gray level, gradient and skin color of face pattern are used to construct the feature set for face detection. Efficient rules differentiating face and non-face pattern are learned with Ada-Boost algorithm, and a cascade classifier is constructed to detect faces. Experiments indicate that the feature of the face detector using multiple-information is superior on the face detector using only gray level information.

参考文献/References:

[1] Yang M H, Kriegman D, Ahuja N. Detecting faces in images:A survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002(1):34-58.
[2] Freund Y, Schapire R E. A short introduction to boosting [J]. Journal of Japanese Society for Artificial Intelligence, 1999(5):771-780.
[3] Viola P, Jones M. Sobust real-time object detection [J]. International Journal of Computer Vision, 2004(2):137-154.doi:10.1023/B:VISI.0000013087.49260.fb.
[4] Osuna E, Freund R, Girosi F. Training support vector machines:An application to face detection [A]. IEEE, 1997.130-136.
[5] Rowley H A, Baluja S. Neural networkbased face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998(1):23-38.doi:10.1109/34.655647.
[6] Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection [J]. IEEE ICIP, 2002(1):900-903.
[7] Zhang Zhenqiu, Li Mingjing. Multi-view face detection with floatboost [J]. WACV, 2002.184-188.
[8] 陈锻生, 刘政凯. 彩色图像边缘特征及其人脸检测性能评价 [J]. 软件学报, 2005(5):727-732.

相似文献/References:

[1]陈威,缑锦.采用Haar小波与Gabor小波特征的级联式人脸检测方法[J].华侨大学学报(自然科学版),2011,32(5):520.[doi:10.11830/ISSN.1000-5013.2011.05.0520]
 CHEN Wei,GOU Jin.A Novel Face Detection Method Based on Haar and Gabor Features[J].Journal of Huaqiao University(Natural Science),2011,32(2):520.[doi:10.11830/ISSN.1000-5013.2011.05.0520]

备注/Memo

备注/Memo:
福建省科技计划国际合作重点基金资助项目(2004I014)
更新日期/Last Update: 2014-03-23