参考文献/References:
[1] PICCIONI A,ROSA F,MANCA F,et al.Gut Microbiota and Clostridium difficile: What we know and the new frontiers[J].International Journal of Molecular Sciences,2022,23(21):13323.DOI:10.3390/ijms232113323.
[2] 郭亚慧,曹青青,尹凤荣,等.住院腹泻患者艰难梭菌感染的危险因素分析[J].胃肠病学,2021,26(8):454-458.DOI:10.3969/j.issn.1008-7125.2021.08.002.
[3] 周勇,吴媛,曾汇文,等.艰难梭菌的感染特征及其危险因素: 基于中南地区某市住院腹泻患者的标本[J].南方医科大学学报,2024,44(5):998-1003.DOI:10.12122/j.issn.1673-4254.2024.05.23.
[4] FEUERSTADT P,THERIAULT N,TILLOTSON G.The burden of CDI in the United States: A multifactorial challenge[J].BMC Infectious Diseases,2023,23(1):132.DOI:10.1186/s12879-023-08096-0.
[5] KELLY CR,FISCHER M,ALLEGRETTI JR,et al.ACG clinical guidelines: Prevention, diagnosis, and treatment of clostridioides difficile infections[J].American Journal of Gastroenterology,2021,116(6):1124-1147.DOI:10.14309/ajg.0000000000001278.
[6] WEI Hongcheng,SUN Jie,SHAN Wenqi,et al.Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus[J].Science of The Total Environment,2022,806(Pt 2):150674.DOI:10.1016/j.scitotenv.2021.150674.
[7] PERSSON I,MACURA A,BECEDAS D,et al.Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY? Sepsis, a prospective randomized clinical validation study[J].Journal of Critical Care,2024,80:154400.DOI:10.1016/j.jcrc.2023.154400.
[8] LI Xiaoqian,XIONG Xingyu,LIANG Zongan,et al.A machine learning diagnostic model for Pneumocystis jirovecii pneumonia in patients with severe pneumonia[J].International Journal of Emergency Medicine,2023,18(6):1741-1749.DOI:10.1007/s11739-023-03353-1.
[9] ?TLE?瘙塁 E,BALCZEWSKI E A,KEIDAN M,et al.Clostridioides difficile infection surveillance in intensive care units and oncology wards using machine learning[J].Infection Control and Hospital Epidemiology,2023,44(11):1776-1781.DOI:10.1017/ice.2023.54.
[10] ALAMRI A,BIN A A,AL H E,et al.Development of a prediction model to identify the risk of clostridioides difficile infection in hospitalized patients receiving at least one dose of antibiotics[J].Pharmacy(Basel),2024,12(1):37.DOI:10.3390/pharmacy12010037.
[11] 王卓,万健,张玉洁,等.基于肠道菌群和代谢组学构建溃疡性结肠炎伴艰难梭菌感染的诊断模型[J].空军军医大学学报,2024,45(3):332-336.DOI:10.13276/j.issn.2097-1656.2024.03.015.
[12] MARRA A R,ALZUNITAN M,ABOSI O,et al.Modest Clostridiodes difficile infection prediction using machine learning models in a tertiary care hospital[J].Diagnostic Microbiology and Infectious Disease,2020,98(2):115104.DOI:10.1016/j.diagmicrobio.2020.115104.
[13] ZAFAR A,ATTIA Z,TESFAYE M,et al.Machine learning-based risk factor analysis and prevalence prediction of intestinal parasitic infections using epidemiological survey data[J].PLOS Neglected Tropical Diseases,2022,16(6):e0010517.DOI:10.1371/journal.pntd.0010517.
[14] TRAN V,SAAD T,TESFAYE M,et al.Helicobacter pylori(H.pylori)risk factor analysis and prevalence prediction: A machine learning-based approach[J].BMC Infectious Diseases,2022,22(1):655.DOI:10.1186/s12879-022-07625-7.
[15] HASSANZADEH R,FARHADIAN M,RAFIEEMEHR H.Hospital mortality prediction in traumatic injuries patients: Comparing different SMOTE-based machine learning algorithms[J].BMC Medical Research Methodology,2023,23(1):101.DOI:10.1186/s12874-023-01920-w.
[16] ZHANG Lixiang,ZHOU Xiaojuan,CAO Jiaoyu.Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning[J].PeerJ,2024,12:e16867.DOI:10.7717/peerj.16867.
[17] TALEBI MM,JAHANI Y,AREFZADEH Z,et al.Predicting diabetes in adults: Identifying important features in unbalanced data over a 5-year cohort study using machine learning algorithm[J].BMC Medical Research Methodology,2024,24(1):220.DOI:10.1186/s12874-024-02341-z.
[18] HAN Hui,WANG Wenyuan,MAO Binghuan.Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Advances in Intelligent Computing.Berlin,Heidelberg:Springer,2005:878-887.DOI:10.1007/11538059_91.
[19] HE Haibo,YANG Bai,GARCIA E A,et al.ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of 2008 IEEE International Joint Conference on Neural Networks.Hong Kong:IEEE Press,2008:1322-1328.DOI:10.1109/IJCNN.2008.4633969.
[20] 周玉,孙红玉,房倩,等.不平衡数据集分类方法研究综述[J].计算机应用研究,2022,39(6):1615-1621.DOI:10.19734/j.issn.1001-3695.2021.10.0590.
[21] JOHNSONA E W,BULGARELLI L,SHEN Lu,et al.MIMIC-IV, a freely accessible electronic health record dataset[J].Scientific Data,2023,10(1):1.DOI:10.1038/s41597-022-01899-x.
[22] SLADE E,NAYLOR MG.A fair comparison of tree-based and parametric methods in multiple imputation by chained equations[J].Statistics in Medicine,2020,39(8):1156-1166.DOI:10.1002/sim.8468.
[23] LESSA FC,MU Y,BAMBERG WM,et al.Burden of Clostridium difficile infection in the United States[J].The New England Journal of Medicine,2015,372(9):825-834.DOI:10.1056/NEJMoa1408913.