参考文献/References:
[1] ZUO Lijian,LI Zexin,CHEN Hongzheng.Ion migration and accumulation in halide perovskite solar cells[J].Chinese Journal of Chemistry,2023,41(7):861-876.DOI:10.1002/cjoc.202200505.
[2] TANG Xinsheng,WANG Zilong,CHEN Shangshang.Modulation of SnO2 electron-transporting materials in perovskite solar cells[J].Solar RRL,2025,9(13):2500247.DOI:10.1002/solr.202500247.
[3] XIE Jiangsheng,HUANG Kun,YU Xuegong,et al.Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J].ACS Nano,2017,11(9):9176-9182.DOI:10.1021/acsnano.7b04070.
[4] TIAN Jingxu,WU Jihuai,LI Ruoshui,et al.Cage polyamine molecule modulating the buried interface of tin oxide/perovskite in photovoltaic devices[J].Nano Energy,2023,118:108939.DOI:10.1016/j.nanoen.2023.108939.
[5] ZHENG Xiaopeng,CHEN Bo,DAI Jun,et al.Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J].Nature Energy,2017,2:1-9.DOI:10.1038/nenergy.2017.102.
[6] 王伟,李芸,熊永强,等.金刚烷类化合物的热稳定性研究及其地质意义[J].地球化学,2023,52(1):29-40.DOI:10.19700/j.0379-1726.2023.01.003.
[7] ?N I,IBI?瘙塁OGLU H,KILI? A,et al.Nucleophilic substitution reactions of adamantane derivatives with cyclophosphazenes[J].Inorganica Chimica Acta,2012,387:226-233.DOI:10.1016/j.ica.2012.01.021.
[8] DAI Runying,MENG Xiangchuan,ZHANG Jiaqi,et al.Pre-buried interface strategy for stable inverted perovskite solar cells based on ordered nucleation crystallization[J].Advanced Functional Materials,2023,33(45):2305013.DOI:10.1002/adfm.202305013.
[9] DU Shuxian,HUANG Hao,LAN Zhineng,et al.Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells[J].Nature Communications,2024,15:5223-5234.DOI:10.1038/s41467-024-49617-y.
[10] XU Chang,HANG Pengjie,KAN Chenxia,et al.Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells[J].Nature Communications,2025,16:835-846.DOI:10.1038/s41467-025-56182-5.
[11] CHEN Pengxu,PAN Weichun,ZHU Sijia,et al.Buried modification with tetramethylammonium chloride to enhance the performance of perovskite solar cells with n-i-p structure[J].Chemical Engineering Journal,2023,468:143652.DOI:10.1016/j.cej.2023.143652.
[12] 董鹏宇,姜月,杨正池,等.NbSe2纳米片优化钙钛矿太阳能电池的埋底界面[J].物理化学学报,2025,41(3):133-142.DOI:10.3866/PKU.WHXB202407025.
[13] LIU Baibai,HE Dongmei,ZHOU Qian,et al.1-adamantanamine hydrochloride resists environmental corrosion to obtain highly efficient and stable perovskite solar cells[J].The Journal of Physical Chemistry Letters,2023,14(10):2501-2508.DOI:10.1021/acs.jpclett.3c00298.
[14] TIAN Jingxu,WU Jihuai,LIN Yuhe,et al.Cage polyamine molecule hexamethylenetetramine as additives for improving performance of perovskite solar cells[J].Energy Technology,2022,11(3):2201182.DOI:10.1002/ente.202201182.
[15] 宋健,苏星宙,姚倩楠,等.多功能氨基酸衍生物钝化的高性能钙钛矿太阳能电池[J].无机化学学报,2023,39(2):327-336.DOI:10.11862/CJIC.2022.292.
[16] AHN N,SON D Y,JANG I H,et al.Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(Ⅱ)iodide[J].Journal of the American Chemical Society,2015,137(27):8696-8699.DOI:10.1021/jacs.5b04930.
[17] LIM E L,WEI Zhanhua.A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells[J].Journal of Energy Chemistry,2024,90(3):504-510.DOI:10.1016/j.jechem.2023.11.021.
[18] 王云飞,刘建华,于美,等.SnO2表面卤化提高钙钛矿太阳能电池光伏性能[J].物理化学学报,2021,37(3):118-128.DOI:10.3866/PKU.WHXB202006030.
[19] ZHU Pengchen,GU Shuai,LUO Xin,et al.Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer[J].Advanced Energy Materials,2020,10(3):1903083.DOI:10.1002/aenm.201903083.
[20] OZEROVA V V,EMELIANOV N A,GUTSEV L G,et al.Enhanced photostability of multication lead halide perovskites through the use of azaadamantane-based modifiers[J].Materials Today Chemistry,2023,30:101590.DOI:10.1016/j.mtchem.2023.101590.
[21] 王秋祥,王仕博,耿嘉莲,等.钙钛矿薄膜样品的紫外光电子能谱制样方法[J].华侨大学学报(自然科学版),2023,44(5):600-606.DOI:10.11830/ISSN.1000-5013.202302021.
[22] ZHANG Yanan,LI Bo,ZHANG Luyuan,et al.Efficient electron transfer layer based on Al2O3 passivated TiO2 nanorod arrays for high performance evaporation-route deposited FAPbI3 perovskite solar cells[J].Solar Energy Materials and Solar Cells,2017,170:187-196.DOI:10.1016/j.solmat.2017.05.072.
[23] WEN Xiaoru,WU Jiamin,YE Meidan,et al.Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells[J].Chemical Communications,2016,52(76):11355-11358.DOI:10.1039/c6cc06290c.
[24] ZHANG Jie,JU?REZ-P?REZE J,MORA-SER? I,et al.Fast and low temperature growth of electron transport layers for efficient perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(13):4909-4915.DOI:10.1039/c4ta06416j.
[25] 殷逍遥,朱文昊,施谱垚,等.SnCl2界面修饰全无机CsPbBr3钙钛矿太阳能电池的制备[J].无机化学学报,2025,41(3):469-479.DOI:10.11862/CJIC.20240309.
[26] WANG Ziyue,KANG Shuaiqing,ZHOU Xia,et al.Piperazine-assisted construction of 2D/3D wide-bandgap perovskite for realizing high-efficiency perovskite/organic tandem solar cells[J].Chinese Journal of Chemistry,2024,42(16):1819-1827.DOI:10.1002/cjoc.202400071.
[27] DENG Chunyan,TAN Lina,WU Jihuai,et al.Solvation-driven grain boundary passivation improving the performance of perovskite solar cells[J].Advanced Energy Materials,2024,14(10):2303387.DOI:10.1002/aenm.202303387.
[28] DUAN Biwen,GUO Linbao,YU Qing,et al.Highly efficient solution-processed CZTSSe solar cells based on a convenient sodium-incorporated post-treatment method[J].Journal of Energy Chemistry,2020,40:196-203.DOI:10.1016/j.jechem.2019.03.029.