参考文献/References:
[1] NATIONAL RENEWABLE ENERGY LABORATORY.Best research-cell efficiency chart[EB/OL].(2025-07-15)[2025-11-10] .https://www.nrel.gov/pv/cell-efficiency.html.
[2] SNAITH H J.Perovskites: The emergence of a new era for low-cost,high-efficiency solar cells[J].The Journal of Physical Chemistry Letters,2013,4(6):3623-3630.DOI:10.1021/jz4020162.
[3] CORRE B,JUAN P,SALIBA M,BUONASSIS T,et al.Promises and challenges of perovskite solar cells[J].Science,2017,358(26):739-744.DOI:10.1126/science.aam6323.
[4] YANG Haichao,GUO Zhihao,XU Zhiyuan,et al.Crystallization modulation through electron transport layer surface reconstruction enables high-performance full-air-processed perovskite solar cells[J].Advanced Materials,2025,762(28):1-100.DOI:10.1002/adma.202510967.
[5] PARK S Y,ZHU Kai.Advances in SnO2 for efficient and stable n-i-p perovskite solar cells[J].Advanced Materials,2022,34(27):1-106.DOI:10.1002/adma.202110438.
[6] LI Bo,LI Shuai,GONG Jianqiu,et al.Fundamental understanding of stability for halide perovskite photovoltaics: The importance of interfaces[J].Chemisty,2024,10(1):35-47.DOI:10.1016/j.chempr.2023.09.002.
[7] WANG Rui,XUE Jingjing,WANG Kaili,et al.Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J].Science,2019,366(6472):1509-1513.DOI:10.1126/Science.aay9698.
[8] DUNLAP S,WILEY A,ZHOU Yuanyuan,et al.Synthetic approaches for halide perovskite thin films[J].Chemical Reviews,2018,119(5):3193-3295.DOI:10.1021/acs.chemrev.8b00318.
[9] ALI F,ROLDAN C C,SOHAIL M,et al.Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability[J].Advanced Energy Materials,2020,10(48):1-100.DOI:10.1002/aenm.202002989.
[10] SHEN Jinliang,LI Na,WANG Yuhang,et al.Delaying crystallization and anchoring the grain boundaries defects via π-π stacked molecules for efficient and stable wide-bandgap perovskite solar cells[J].Chemical Engineering Journal,2024,489(1):284-292.DOI:10.1016/j.cej.2024.151459.
[11] CHEN Haoran,CHEN Yuetian,ZHANG Taiyang,et al.Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics[J].Small Structures,2021,2(5):200-205.DOI:10.1002/sstr.202000130.
[12] GE Jinghao,LI Fengzhu,ZHANG Lu,et al.Unraveling the thermodynamic origins and kinetic pathways of intermediate phase engineering in perovskite solar cells[J].Matter,2025,8(7):201-209.DOI:10.1016/j.matt.2025.102144.
[13] KANG Ziyong,FENG Peng,WANG Kun,et al.Synchronous dimension-crystallization engineering enables highly efficient 2D/3D tin perovskite solar cells[J].Energy & Environmental Science,2025,18(9):4108-4119.DOI:10.1039/D4EE06142J.
[14] RAJAGOPAL A,YAO Kai,JEN A K Y.Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering[J].Advanced Materials,2018,30(32):30-55.DOI:10.1002/adma.201800455.
[15] WANG Borui,LI Nan,WANG Zezhang,et al.Implanting crystal nuclei at the buried interface to regulate the growth of inorganic perovskite for high-performance solar cells[J].Advanced Materials,2025,18(5):450-457.DOI:10.1002/adma.202515469.
[16] SUN Qing,LIU Gang,DUAN Shaocong,et al.Perovskite crystallization regulation by a green antisolvent for high-performance NiOx-based inverted solar cells[J].Nano Letters,2025,25(10):3883-3890.DOI:10.1021/acs.nanolett.4c05993.
[17] LI Shengwen,GU Hao,ZHU Annan,et al.Anion-cation synergistic regulation of low-dimensional perovskite passivation layer for perovskite solar cells[J].Advanced Materials,2025,37(28):986-988.DOI:10.1002/adma.202500988.
[18] SONG Peiquan,HOU Enlong,LIANG Yuming,et al.Regulating orientational crystallization and buried interface for efficient perovskite solar cells enabled by a multi-fluorine-containing higher fullerene derivative[J].Advanced Functional Materials,2023,33(45):230-243.DOI:10.1002/adfm.202303841.
[19] HUI Jingjing,ZHAN Jun,ZHANG Jinxia,et al.Super strong bonding at the interface between ETL and perovskite for robust flexible optoelectronic devices[J].Angewandte Chemie International Edition,2025,64(14):123-132.DOI:10.1002/ange.202424483.
[20] CAO Yang,YANG Li,YAN Nan,et al.Buried interface modification for high performance and stable perovskite solar cells[J].Energy & Environmental Science,2025,18(8):3659-3667.DOI:10.1039/D4EE05466K.
[21] GU Lei,SU Jiacheng,CHEN Ruiqian,et al.Modifying buried heterogeneous contacts to promote efficient carrier extraction for efficient perovskite solar cells[J].Chemical Engineering Journal,2025,509(6)161-168.DOI:10.1016/j.cej.2025.161387.
[22] LIU Qi,WANG Zhen,WANG Zixiang,et al.Heterogeneous nucleation-induced upward crystallization for perovskite solar cells[J].ACS Energy Letters,2025,10(6):2972-2977.DOI:10.1021/acsenergylett.5c00758.
[23] LIN Yu,LIN Jiaru,YAN Haocong,et al.Pre-nucleation chemical bath deposition of high-performance and reproducible SnO2 electron transport layer for perovskite solar cells[J].Advanced Functional Materials,2025,6(9):3044-3052.DOI:10.1002/adfm.202512725.
[24] LI Shude,XIAO Yun,SU Rui,et al.Coherent growth of high-miller-index facets enhances perovskite solar cells[J].Nature,2024,635(8040):874-881.DOI:10.1038/s41586-024-08159-5.
[25] WANG Yurui,LIN Renxing,LIU Chenshuaiyu,et al.Homogenized contact in all-perovskite tandems using tailored 2D perovskite[J].Nature,2024,635(8040):867-873.DOI:10.1038/s41586-024-08158-6.
[26] LI Quanzhou,Wang Min,LI Liang.Molecularly guided buried-interface regulation for efficient and stable inverted perovskite solar cells[J/OL].Energy & Environmental Science,1-36(2025-11-04)[2025-11-13] .https://doi.org/10.1039/D5EE05094D.
[27] LIU Naihe,ZHANG Gao,WEI Meng,et al.Particle decoration enables solution-processed perovskite integration with fully-textured silicon for efficient tandem solar cells[J].Nature Communications,2025,16(1): 35-43.DOI:10.1038/s41467-025-64546-0.
[28] JIANG Qi,TONG Jinhui,XIAN Yeming,et al.Surface reaction for efficient and stable inverted perovskite solar cells[J].Nature,2022,611(7935):278-283.DOI:10.1038/s41586-022-05268-x.
[29] LI Wei,ROTHMANN M U,ZHU Ye,et al.The critical role of composition-dependent intragrain planar defects in the performance of MA1-xFAxPbI3 perovskite solar cells[J].Nature Energy,2021,6(6):624-632.DOI:10.1038/s41560-021-00830-9.
[30] GE Yansong,WANG Haibing,WANG Cheng,et al.Intermediate phase engineering with 2,2-azodi(2-methylbutyronitrile)for efficient and stable perovskite solar cells[J].Advanced Materials,2023,35(23):221-228.DOI:10.1002/adma.202210186.
[31] LI Chi,GANESAN P,LI Yuheng,et al.Synergistic electron-deficient surface engineering: A key factor in dictating electron carrier extraction for perovskite photovoltaics[J].Journal of the American Chemical Society,2025,147(29):25738-25749.DOI:10.1021/jacs.5c07357.
[32] ZHAO Minming,GU Wei Min,JIANG Ke,et al.2,2’-bipyridyl-4,4’-dicarboxylic acid modified buried interface of high-performance perovskite solar cells[J].Angewandte Chemie,2025,64(6):638-645.DOI:10.1002/ange.202418176.
[33] LIU Yinjiang,KONG Tengfei,ZHANG Yang,et al.Stable and efficient perovskite photovoltaics via a three-in-one passivating approach by aminoacetonitrile hydrochloride[J].Advanced Energy Materials,2025,15(20):245-252.DOI:10.1002/aenm.202404638.
[34] QIN Fei,MENG Wei,FAN Jiacheng,et al.Enhanced thermochemical stability of CH3NH3PbI3 perovskite films on zinc oxides via new precursors and surface engineering[J].ACS Applied Materials & Interfaces,2017,9(31):26045-26051.DOI:10.1021/acsami.7b07192.
[35] XIONG Lianbin,GUO Yaxiong,WEN Jian,et al.Review on the application of SnO2 in perovskite solar cells: Advanced functional materials[J],2025,28(35):180-198.DOI:10.1002/adfm.201802757.
[36] CHEN Haibin,DING Xihong,XU Pan,et al.Forming intermediate phase on the surface of PbI2 precursor films by short-time DMSO treatment for high-efficiency planar perovskite solar cells via vapor-assisted solution process[J].ACS Applied Materials & Interfaces,2018,10(2):1781-1791.DOI:10.1021/acsami.7b17781.
[37] LONG Cao,WANG Ning,HUNG Ke,et al.Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor[J].Chinese Physics B,2020,29(4):483-490.DOI:10.1088/1674-1056/ab7744.
[38] BAI Dongliang,WANG Haoxu,YANG Shaoan,et al.Formamidinium in situ assistance for buried interfaces in perovskite solar cells[J].Advanced Energy Materials,2025,15(31):250-256.DOI:10.1002/aenm.202501206.
[39] LUO Chao,ZHOU Qisen,Wang Keli,et al.Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells[J].Nature Materials,2025,24(8):1-8.DOI:10.1038/s41563-025-02275-x.
[40] TIAN Ruijia,LIU Chang,MENG Yuanyuan,et al.Nucleation regulation and mesoscopic dielectric screening in α-FAPbI3[J].Advanced Materials,2024,36(13):993-999.DOI:10.1002/adma.202309998.
[41] WANG Xin,LI Yuwei,XU Yubing,et al.Organometallic perovskite single crystals grown on lattice-matched substrate for photodetection[J].Nano Materials Science,2019,2(3):292-296.DOI:10.1016/j.nanoms.2019.10.007.
[42] WANG Fei,WANG Taomiao,SUN Yonggui,et al.Two-step perovskite solar cells with > 25% efficiency: Unveiling the hidden bottom surface of perovskite layer[J].Advanced Materials,2024,36(31):240-248.DOI:10.1002/adma.202401476.
[43] HU Ping,ZHOU Wenbo,CHEN Junliang,et al.Multidentate anchoring strategy for synergistically modulating crystallization and stability towards efficient perovskite solar cells[J].Chemical Engineering Journal,2023,480(15):148-159.DOI:10.1016/j.cej.2023.148249.
[44] ZHANG Zuhong,ZHU Rui,TANG Ying,et al.Anchoring charge selective self-assembled monolayers for tin-lead perovskite solar cells[J].Advanced Materials,2024,36(18):231-239.DOI:10.1002/adma.202312264.
[45] AUZELLE T,ULLRICH F,HIETZSCHOLD S,et al.External control of GaN band bending using phosphonate self-assembled monolayers[J].ACS Applied Materials & Interfaces,2021,13(3):4626-4635.DOI:10.1021/acsami.0c17519.
[46] CHAO Luo,GUAN Ha,ZHAO Qing,et al.Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer[J].Nature photonics,2023,17(10):856-864.DOI:10.1038/s41566-023-01247-4.
[47] LI Qing,ZHENG Yichun,HOU Yu,et al.Graphene-polymer reinforcement of perovskite lattices for durable solar cells[J].Science,2025,387(6738):1069-1077.DOI:10.1126/science.adu5563.
[48] YANG Jianxiong,WANG Zelin,ZHAO Xiaojia,et al.Guiding vertical growth and improving the buried interface of Pb-Sn perovskite films with 2D perovskite seeds for efficient narrow-bandgap perovskite solar cells and tandems[J].Energy & Environmental Science,2025,18(6):2883-2894.DOI:10.1039/D4EE05948D.
[49] LIU Chang,CHENG Yibing,GE Ziyi.Understanding of perovskite crystal growth and film formation in scalable deposition processes[J].Chemical Society Reviews,2020,49(6):1653-1687.DOI:10.1039/c9cs00711c.
[50] MAHESH S,BALL J M,OLIVER R D,et al.Revealing the origin of voltage loss in mixed-halide perovskite solar cells[J].Energy & Environmental Science,2020,13(1):258-267.DOI:10.1039/c9ee02162k.
[51] ZHANG Jindan,LI Chi,ZHU Mengqi,et al.Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks[J].Nano Energy,2023,108(17):108-115.DOI:10.1016/j.nanoen.2023.108217.
[52] ZHOU Bo,ZHAO Pei,GUO Junxue,et al.Solvent-additive cascade engineering enables single-oriented perovskite films with facet-driven performance and stability[J].Energy & Environmental Science,2025,15(1):102-112.DOI:10.1039/D5EE04415D.
[53] WANG Guoliang,ZHRNG Jianghui,DUA Weiyuan,et al.Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells[J].Joule,2023,7(11):2583-2594.DOI:10.1016/j.joule.2023.09.007.
[54] SIVADA D,SINGAREDD A,VINOD C G,et al.Ionic charge imbalance in perovskite solar cells[J].The Journal of Physical Chemistry C,2023,127(46):22766-22774.DOI:10.1021/acs.jpcc.3c05673.
[55] FANG Zihan,WANG Luyao,MU Xijiao,et al.Grain boundary engineering with self-assembled porphyrin supramolecules for highly efficient large-area perovskite photovoltaics[J].Journal of the American Chemical Society,2021,143(45):18989-18996.DOI:10.1021/jacs.1c07518.
[56] FAN Zhenghui,ZHOU Bin,LU Xiaojuan,et al.Thermal expansion regulation of metal halide perovskites for robust flat-panel X-ray image detectors[J].Device,2025,3(3):100617.DOI:10.1016/j.device.2024.100617.
[57] ZHANG Haolin,WANG Ze,WAN Haoyu,et al.Strain relaxation and phase regulation in quasi-2D perovskites for efficient solar cells[J].Journal of Materials Chemistry A,2023,11(28):15301-15310.DOI:10.1039/d3ta01935g.
[58] CORDERO F,CRACIUM F,TREQUATTRIN F,et al.Stability of cubic FAPbI3 from X-ray diffraction, anelastic and dielectric measurements[J].Journal of Physical Chemistry Letters,2019,10(10):2463-2469.DOI:10.1021/acs.jpclett.9b00896.
[59] ZHU Cheng,NIU Xiuxiu,FU Yuhao,et al.Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J].Nature Communications,2019,815(10):497-508.DOI:10.1038/s41467-019-08507-4.
[60] SHIN K H,PARK S K,NAKHANICEJ P,et al.Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes[J].Applied Physics Reviews,2020,7(4):41-56.DOI:10.1063/5.0020805.
[61] TSAI H,ASADPOUR R,BLANCON J-C,et al.Light-induced lattice expansion leads to high-efficiency perovskite solar cells[J].Science,2018,360(6384):67-70.DOI:10.1126/science.aap8671.