参考文献/References:
[1] TANG Ming,LI Yuanyuan,YAO Wei,et al.A strip steel surface defect detection method based on attention mechanism and multi-scale maxpooling[J].Measurement Science and Technology,2021,32(11):115401.DOI:10.1088/1361-6501/ac0ca8.
[2] LI Mengjiao,WANG Hao,WAN Zhibo.Surface defect detection of steel strips based on improved YOLOv4[J].Computers and Electrical Engineering,2022,102:108208.DOI:10.1016/j.compeleceng.2022.108208.
[3] DU Yongzhao,CHEN Haixin,FU Yuqing,et al.AFF-Net: A strip steel surface defect detection network via adaptive focusing features[J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-14.DOI:10.1109/TIM.2024.3398131.
[4] HUANG Xiaohua,ZHU Jiahao,HUO Ying.SSA-YOLO: An improved YOLO for hot-rolled strip steel surface defect detection[J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-17.DOI:10.1109/TIM.2024.3488136.
[5] ZHOU Qiqi,WANG Haichao.CABF-YOLO: A precise and efficient deep learning method for defect detection on strip steel surface[J].Pattern Analysis and Applications,2024,27(2):36.DOI:10.1007/s10044-024-01252-5.
[6] LU Jiaobo,ZHU Mingrui,MA Xiaoya,et al.Steel strip surface defect detection method based on improved YOLOv5s[J].Biomimetics,2024,9(1):28.DOI:10.3390/biomimetics9010028.
[7] SHEN Kunye,ZHOU Xiaofei,LIU Zhi.MINet: Multiscale interactive network for real-time salient object detection of strip steel surface defects[J].IEEE Transactions on Industrial Informatics,2024,20(5):7842-7852.DOI:10.1109/TII.2024.3366221.
[8] WANG C Y,LIAO H M,WU Y H,et al.A new backbone that can enhance learning capability of CNN.2020 IEEE[C]//CVF Conference on Computer Vision and Pattern Recognition Workshops.Seattle:IEEE Press,2020:390-391.DOI:10.1109/CVPRW50498.2020.00203.
[9] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].Advances in Neural Information Processing Systems,2017,30:5998-6008.DOI:10.5555/3295222.3295349.
[10] MISRA D,NALAMADA T,ARASANIPLLAI A U,et al.Rotate to attend: Convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Waikoloa:IEEE Press,2021:3139-3148.DOI:10.1109/WACV48630.2021.00318.
[11] WANG Jiaqi,CHEN Kai,XU Rui,et al.CARAFE: Content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Waikoloa:IEEE Press,2019:3007-3016.DOI:10.1109/ICCV.2019.00310.
[12] Lü Xiaoming,DUAN Fajie,JIANG Jiajia,et al.Deep metallic surface defect detection: The new benchmark and detection network[J].Sensors,2020,20(6):1562.DOI:10.3390/s20061562.
[13] GUI Zili,GENG Jianping.YOLO-ADS: An improved YOLOv8 algorithm for metal surface defect detection[J].Electronics,2024,13(16):3129.DOI:10.3390/electronics13163129.
[14] WANG Ao,CHEN Hui,LIU Lihao,et al.YOLOV10: Real-time end-to-end object detection[J].Advances in Neural Information Processing Systems,2024,37:107984-108011.DOI:10.5555/3737916.3741345.
[15] ZHAO Yian,Lü Wenyu,XU Shangliang,et al.Detrs beat yolos on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2024:16965-16974.DOI:10.1109/CVPR52733.2024.01605.
[16] GUO Shijing,LI Bohan,ZHANG Jinjing,et al.SDS-YOLOv8n: A lightweight detection method for flames and smoke[C]//Journal of Physics: Conference Series.Changchun: Institute of Physics Publishing,2024:012020.DOI:10.1088/1742-6596/2858/1/012020.
[17] LI Chengfei,WEN Zhikai,HUANG Haijian,et al.An efficient lightweight detection model for steel surface defects with dynamic deformable head[J].Engineering Research Express,2025,7(1):015282.DOI:10.1088/2631-8695/adbab4.
[18] HUANG Shihua,LU Zhichao,CUN Xiaodong,et al.DEIM: DETR with improved matching for fast convergence[C]//Proceedings of the Computer Vision and Pattern Recognition Conference.Nashville: IEEE Press,2025:15162-15171.DOI:10.1109/CVPR52734.2025.01412.
[19] HUANG Weibo,WEI Peng,ZHANG Manhua,et al.HRIPCB: A challenging dataset for PCB defects detection and classification[J].The Journal of Engineering,2020,2020(13):303-309.DOI:10.1049/joe.2019.1183.
相似文献/References:
[1]刘韶涛,姚灿荣.结合PSO的改进压缩跟踪方法[J].华侨大学学报(自然科学版),2017,38(1):121.[doi:10.11830/ISSN.1000-5013.201701024]
LIU Shaotao,YAO Canrong.Improved Compress Tracking Algorithm Based on PSO[J].Journal of Huaqiao University(Natural Science),2017,38(5):121.[doi:10.11830/ISSN.1000-5013.201701024]
[2]吴琼,陈锻生.多尺度卷积循环神经网络的情感分类技术[J].华侨大学学报(自然科学版),2017,38(6):875.[doi:10.11830/ISSN.1000-5013.201606077]
WU Qiong,CHEN Duansheng.Sentiment Classification With Multiscale Convolutional Recurrent Neural Network[J].Journal of Huaqiao University(Natural Science),2017,38(5):875.[doi:10.11830/ISSN.1000-5013.201606077]
[3]林文华,房怀英,范璐璐,等.采用双相机多尺度方法的机制砂级配测量及空隙率预测[J].华侨大学学报(自然科学版),2022,43(3):285.[doi:10.11830/ISSN.1000-5013.202112021]
LIN Wenhua,FANG Huaiying,FAN Lulu,et al.Gradation Measurement and Void Content Prediction of Manufactured Sand Using Dual Camera Multi-Scale Method[J].Journal of Huaqiao University(Natural Science),2022,43(5):285.[doi:10.11830/ISSN.1000-5013.202112021]