参考文献/References:
[1] ZHANG Jian,DING Guofu,ZOU Yisheng,et al.Review of job shop scheduling research and its new perspectives under Industry 4.0[J].Journal of Intelligent Manufacturing,2019,30(4):1809-1830.DOI:10.1007/s10845-017-1350-2.
[2] TENG Guodong.An improved genetic algorithm for dual-resource constrained flexible job shop scheduling problem with tool-switching dependent setup time[J].Expert Systems with Applications,2025,281:127496.DOI:10.1016/J.ESWA.2025.127496.
[3] AMJAD M K,BUTT S I,KOUSAR R,et al.Recent research trends in genetic algorithm based flexible job shop scheduling problems[J].Mathematical Problems in Engineering,2018,2018:9270802.DOI:10.1155/2018/9270802.
[4] 崔雪艳,万烂军,赵昊鑫,等.基于深度强化学习的柔性作业车间调度方法[J].制造技术与机床,2023(12):165-170.DOI:10.19287/j.mtmt.1005-2402.2023.12.024.
[5] 陈永灿,刘宇,周艳平.求解多目标柔性作业车间调度问题的混合自适应差分进化算法[J].制造技术与机床,2023(12):171-177.DOI:10.19287/j.mtmt.1005-2402.2023.12.025.
[6] MASMOUDI O,DELORME X,GIANESSI P.Job-shop scheduling problem with energy consideration[J].International Journal of Production Economics,2019,216:12-22.DOI:10.1016/j.ijpe.2019.03.021.
[7] MOKHTARI H,HASANI A.An energy-efficient multi-objective optimization for flexible job-shop scheduling problem[J].Computers & Chemical Engineering,2017,104:339-352.DOI:10.1016/j.compchemeng.2017.05.004.
[8] WU Xiuli,SUN Yangjun.A green scheduling algorithm for flexible job shop with energy-savingmeasures[J].Journal of Cleaner Production,2018,172:3249-3264.DOI:10.1016/j.jclepro.2017.10.342.
[9] 杨国栋,冯国红.改进麻雀算法求解低碳柔性作业车间调度问题[J].中国新技术新产品,2023(20):131-133.DOI:10.13612/j.cnki.cntp.2023.20.003.
[10] 徐宜刚,陈勇,王宸,等.改进NSGA-Ⅲ求解高维多目标绿色柔性作业车间调度问题[J].系统仿真学报,2024,36(10):2314-2329.DOI:10.16182/j.issn1004731x.joss.23-0694.
[11] JIANG Tianhua,DENG Guanlong.Optimizing the low-carbon flexible job shop scheduling problem considering energy consumption[J].IEEE Access,2018,6:46346-46355.DOI:10.1109/access.2018.2866133.
[12] LUAN Fei,ZHAO Hongxuan,LIU Shiqiang,et al.Enhanced NSGA-Ⅱ for multi-objective energy-saving flexible job shop scheduling[J].Sustainable Computing: Informatics and Systems,2023,39:100901.DOI:10.1016/J.SUSCOM.2023.100901.
[13] PAN Zixiao,LEI Deming,WANG Ling.A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems,2021,52(8):5295-5307.DOI:10.1109/TSMC.2021.3120702.
[14] LUAN Fei,LI Ruitong,LIU Shiqiang,et al.An improved sparrow search algorithm for solving the energy-saving flexible job shop schedulingproblem[J].Machines,2022,10(10):847.DOI:10.3390/MACHINES10100847.
[15] SANG Yanwei,TAN Jianping.Many-objective flexible job shop scheduling problem with green consideration[J].Energies,2022,15(5):1884.DOI:10.3390/EN15051884.
[16] LI Jian,LI Huankun,HE Pengbo,et al.Flexible job shop scheduling optimization for green manufacturing based on improved multi-objective wolf packalgorithm[J].Applied Sciences,2023,13(14):8535.DOI:10.3390/APP1314 8535.
[17] LUAN Fei,CAI Zongyan,WU Shuqiang,et al.Optimizing the low-carbon flexible job shop scheduling problem with discrete whale optimization algorithm[J].Mathematics,2019,7(8):688.DOI:10.3390/math7080688.
[18] LI Zhi,CHEN Yingjian.Minimizing the makespan and carbon emissions in the green flexible job shop scheduling problem with learning effects[J].Scientific Reports,2023,13(1):6369.DOI:10.1038/S41598-023-33615-Z.
[19] PENG Zhao,ZHANG Huan,TANG Hongtao,et al.Research on flexible job-shop scheduling problem in green sustainable manufacturing based on learning effect[J].Journal of Intelligent Manufacturing,2021,33(6):1-22.DOI:10.1007/S10845-020-01713-8.
[20] DEB K,AGRAWAL S,PRATAP A,et al.A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.DOI:10.1109/4235.996017.
[21] DEB K,JAIN H.An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: Solving problems with box constraints[J].IEEE Transactions on Evolutionary Computation,2013,18(4):577-601.DOI:10.1109/TEVC.2013.2281535.
[22] ZITZLER E,LAUMANNS M,THIELE L,et al.SPEA2: Improving the strength Pareto evolutionary algorithm[J].TIK report,2001,103.DOI:10.3929/ethz-a-004284029.
[23] BRANDIMARTE P.Routing and scheduling in a flexible job shop by tabu search[J].Annals of Operations Research,1993,41(3):157-183.DOI:10.1007/BF02023073.
[24] HURINK J,JURISCH B,THOLE M.Tabu search for the job-shop scheduling problem with multi-purpose machines[J].Operations-Research-Spektrum,1994,15(4):205-215.DOI:10.1007/BF01719451.