参考文献/References:
[1] RAZZAQ A.Blockchain-based secure data transmission for internet of underwater things[J].Cluster Computing,2022,25(6):4495-4514.
[2] ROTMENSCH M,HALPERN Y,TLIMAT A,et al.Learning a health knowledge graph from electronic medical records[J].Scientific Reports,2017,7(1):5994.
[3] JI Shengwei,LIU Longfei,XI Jizhong,et al.KLR-KGC: Knowledge-guided LLM reasoning for knowledge graph completion[J].Electronics,2024,13(24):5037.
[4] SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.DOI:10.1145/359168.359176.
[5] CHEN Huajun,HU Ning,QI Guilin,et al.OpenKG Chain: A blockchain infrastructure for open knowledge graphs[J].Data Intelligence,2021,3(2):205-227.DOI:10.1162/dint_a_00095.
[6] JAYABALASAMY G,PUJOL C,BHASKARAN K L.Application of graph theory for blockchain technologies[J].Mathematics,2024,12:1133.DOI:10.3390/math12081133.
[7] TSOULIAS K,PALAIOKRASSAS G,FRAGKOS G,et al.A graph model based blockchain implementation for increasing performance and security in decentralized ledger systems[J].IEEE Access,2020,8:130952-130965.
[8] ZHANG Haibao,JIANG Wenbao,JIN Ding.A blockchain network admission control mechanism using anonymous identity-based cryptography[J].Applied Sciences,2025,15:130.DOI:10.3390/app15010130.
[9] CALDARELLI G.Understanding the blockchain oracle problem: A call for action[J].Information,2020,11:509.DOI:10.3390/info11110509.
[10] CHANDAK P,HUANG Kexin,ZITNIK M.Building a knowledge graph to enable precision medicine[J].Scientific Data,2023,10:67.DOI:10.1038/s41597-023-01960-3.
[11] LIU Yushan,MA Yunpu,HILDEBRANDT M,et al.TLogic: Temporal logical rules for explainable link forecasting on temporal knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washington D C: AAAI Press,2022:4120-4127.
[12] 朱龙.利润约束的关联规则挖掘算法[J].华侨大学学报(自然科学版),2015,36(5):522-526.DOI:10.11830/ISSN.1000-5013.2015.05.0522.
[13] LUO Linhao,JU Jiaxin,XIONG Bo,et al.ChatRule: Mining logical rules with large language models for knowledge graph reasoning[C]//Advances in Knowledge Discovery and Data Mining.Singapore: Springer,2025:341-356.DOI:10.1007/978-981-96-8173-0_25.
[14] MILUTINOVIC M,BAYDIN G A,ZINKOV R,et al.End-to-end training of differentiable pipelines across machine learning frameworks[EB/OL].(2019-01-01)[2025-08-22] .https://openreview.net/forum?id=ryh7qqGRZ.
[15] QU Meng,CHEN Junkun,XHONNEUX L P,et al.RNNLogic: Learning logic rules for reasoning on knowledge graphs[EB/OL].(2020-10-08)[2025-08-22] .https://arxiv.org/abs/2010.04029.
[16] CHENG Kewei,AHMED N K,SUN Yizhou.Neural compositional rule learning for knowledge graph reasoning[EB/OL].(2023-03-07)[2025-08-22] .https://arxiv.org/abs/2303.03581.
[17] XU Zezhong,YE Peng,CHEN Hui,et al.Ruleformer: Context-aware rule mining over knowledge graph[C]//Proceedings of the 29th International Conference on Computational Linguistics.Gyeongju: Association for Computational Linguistics,2022:2551-2560.
[18] PAN Shitui,LUO Linhao,WANG Yufei,et al.Unifying large language models and knowledge graphs: A roadmap[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(7):3580-3599.
[19] WANG Shihao,DU Xuehui,WU Xiangyu,et al.A trusted distributed oracle scheme based on share recovery threshold signature[J].Computers, Materials&Continua,2025,82(2):3355-3379.DOI:10.32604/cmc.2024.059722.
[20] 程小刚,郭韧,周长利,等.层次匿名群签名的概念与构建[J].华侨大学学报(自然科学版),2022,43(6):819-824.DOI:10.11830/ISSN.1000-5013.202202009.
[21] KRAUSE S,STOLZENBURG F.Commonsense reasoning and explainable artificial intelligence using large language models[C]//ECAI 2023 International Workshops.Cham: Springer,2024:221-235.DOI:10.1007/978-3-031-50396-2_17.
[22] HINTON G E.Learning distributed representations of concepts[C]//Proceedings of the Annual Meeting of the Cognitive Science Society.Hillsdale: Cognitive Science Society,1986:1-12.
[23] KOK S,DOMINGOS P.Statistical predicate invention[C]//Proceedings of the 24th International Conference on Machine Learning.New York: Association for Computing Machinery,2007:433-440.DOI:10.1145/1273496.1273556.
[24] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26:2787-2795.
[25] YANG Bishan,YIH W,HE Xiaodong,et al.Embedding entities and relations for learning and inference in knowledge bases[EB/OL].(2014-12-20)[2025-08-22] .https://arxiv.org/abs/1412.6575.
[26] TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning.New York: Association for Computing Machinery,2016:2071-2080.
[27] SUN Zhiqing,DENG Zhihong,NIE Jianyun,et al.RotatE: Knowledge graph embedding by relational rotation in complex space[EB/OL].(2019-02-26)[2025-08-22] .https://arxiv.org/abs/1902.10197.
[28] TANG Xiaojuan,ZHU Songchun,LIANG Yitao,et al.RulE: Knowledge graph reasoning with rule embedding[EB/OL].(2022-10-27)[2025-08-22] .https://arxiv.org/abs/2210.14905.
[29] XU Zezhong,YE Peng,CHEN Hui,et al.Ruleformer: Context-aware rule mining over knowledge graph[C]//Proceedings of the 29th International Conference on Computational Linguistics.Gyeongju: Association for Computational Linguistics,2022:2551-2560.
[30] WEI J,BOSMA M,ZHAO V Y,et al.Finetuned language models are zero-shot learners[C]//The Tenth International Conference on Learning Representations.Vancouver: [s.n.],2021:5-9.
[31] CHENG Kewei,LIU Jiahao,WANG Wei,et al.RLogic: Recursive logical rule learning from knowledge graphs[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York: Association for Computing Machinery,2022:179-189.