参考文献/References:
[1] XIA Ning,ZHAO Xiaolei,YANG Yimin,et al.Exploration on real world assets and tokenization[EB/OL].(2025-05-05)[2025-07-05] .https://doi.org/10.48550/arXiv.2503.01111.
[2] ZHU Konglin,WU Fengjuan,WANG Fei,et al.Blockchain-based digital asset circulation: A survey and future challenges[J].Symmetry,2024,16(10):1287.DOI:10.3390/sym16101287.
[3] DE WITT C S.Open challenges in multi-agent security: Towards secure systems of interactingai agents[EB/OL].(2025-05-04)[2025-07-05] .https://doi.org/10.48550/arXiv.2505.02077.
[4] FERREIRA G O,RAVAZZI C,DABBENE F,et al.Forecasting network traffic: A survey and tutorial with open-source comparative evaluation[J].IEEE Access,2023,11:6018-6044.DOI:10.1109/ACCESS.2023.3236261.
[5] MENG Xuying,LIN Chungang,WANG Yequan,et al.NetGPT: Generative pretrained transformer for network traffic[EB/OL].(2023-05-17)[2025-07-05] .https://doi.org/10.48550/arXiv.2304.09513.
[6] DOS REIS E F,TEYTEIBOYM A,ELBAHRAWY A,et al.Identifying key players in dark web marketplaces through Bitcoin transaction networks[J].Scientific Reports,2024,14(1):2385.DOI:10.1038/s41598-023-50409-5.
[7] YUAN Yachao,HUANG Yu,WANG Jin.Adaptive NAD: Online and self-adaptive unsupervised network anomaly detector[EB/OL].(2025-07-02)[2025-07-05] .https://doi.org/10.48550/arXiv.2410.22967.
[8] RAZALI N A M,SHAMSAIMON N,ISHAK K K,et al.Gap, techniques and evaluation: Traffic flow prediction using machine learning and deep learning[J].Journal of Big Data,2021,8:152.DOI:10.1186/s40537-021-00542-7.
[9] SALEEM J,ISLAM R,ISLAM M Z.Darknet traffic analysis: A systematic literature review[J].IEEE Access,2024,12:42423-42452.DOI:10.1109/ACCESS.2024.3373769.
[10] INUWA M M,DAS R.A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks[J].Internet of Things,2024,26:101162.DOI:10.1016/j.iot.2024.101162.
[11] FAHEEM A,KHAN M M.Real-time detection of cyber threats via dark web traffic analysis using machine learning and deep learning[C]//4th International Conference on Innovations in Computer Science.Karachi:IEEE Press,2024:1-12.DOI:10.1109/ICONICS64289.2024.10824507.
[12] BOUGAHAM A,FRéNAY B.Towards a trustworthy anomaly detection for critical applications through approximated partial AUC loss[EB/OL].(2025-04-01)[2025-07-05] .https://doi.org/10.48550/arXiv.2502.11570.
[13] REZAEI S,LIU Xin.Deep learning for encrypted traffic classification: An overview[J].IEEE Communications Magazine,2019,57(5):76-81.DOI:10.1109/MCOM.2019.1800819.
[14] LIU Chang,ANTYPENKO R,SUSHKO I,et al.Intrusion detection system after data augmentation schemes based on the VAE and CVAE[J].IEEE Transactions on Reliability,2022,71(2):1000-1010.DOI:10.1109/TR.2022.3164877.
[15] WANG Zihao,FOK K W,THING V L L.Network attack traffic detection with hybrid quantum-enhanced convolution neural network[J].Quantum Machine Intelligence,2025,7(1):50.DOI:10.1007/s42484-025-00278-0.
[16] MALARKKAN A V,WANG Dongjie,FU Yanjie.Multi-view causal graph fusion based anomaly detection in cyber-physical infrastructures[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management.Boise:ACM,2024:4760-4767.DOI:10.1145/3627673.3680096.
[17] ACETO G,CIUONZO D,MONTIERI A,et al.DISTILLER: Encrypted traffic classification via multimodal multitask deep learning[J].Journal of Network and Computer Applications,2021,183:102985.DOI:10.1016/j.jnca.2021.102985.
[18] DIAO Zulong,XIE Gaogang,WANG Xin,et al.EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks[J].Computer Networks,2023,224:109614.DOI:10.1016/j.comnet.2023.109614.
[19] FENG Minghan,HSU C C,LI Chengte,et al.MARINE: Multi-relational network embeddings with relational proximity and node attributes[C]//The World Wide Web Conference.New York:Association for Computing Machinery,2019:470-479.DOI:10.1145/3308558.3313715.
[20] WANG Cheng,ZHU Hangyu.Wrongdoing monitor: A graph-based behavioral anomaly detection in cyber security[J].IEEE Transactions on Information Forensics and Security,2022,17:2703-2718.DOI:10.1109/TIFS.2022.3191493.
[21] YOU Yuning,CHEN Tianlong,SUI Yongduo,et al.Graph contrastive learning with augmentations[C]//34th Conference on Neural Information Processing Systems.Vancouver:Curran Associates,2020,33:5812-5823.DOI:10.48550/arXiv:2010.13902.
[22] LUO Xuexiong,WU Jia,YANG Jian,et al.Deep graph level anomaly detection with contrastive learning[J].Scientific Reports,2022,12(1):19867.DOI:10.1038/s41598-022-22086-3.
[23] LIU Kunpeng,FU Yanjie,WU Le,et al.Automated feature selection: A reinforcement learning perspective[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(3):2272-2284.DOI:10.1109/TKDE.2021.3115477.
[24] 霍跃华,赵法起.基于Stacking与多特征融合的加密恶意流量检测[J].计算机工程.2023,49(5):165-172.DOI:10.19678/j.issn.1000-3428.0064805.
[25] HUANG Hong,ZHOU Yinghang,JIANG Feng,et al.MFF: A multimodal feature fusion approach for encrypted traffic classification[J].Electronics,2025,14(13):2584.DOI:10.3390/electronics14132584.
[26] CHEN Yiren,CUI Mengjiao,WANG Ding,et al.A survey of large language models for cyber threat detection[J].Computers & Security,2024,145:104016.DOI:10.1016/j.cose.2024.104016.
[27] HWANG Y,KURT F,CUREBAL F,et al.ContextualGraph-LLM: A multimodal framework for enhanced Darknet traffic analysis[J].Available at SSRN,2026,297:129298.DOI:10.1016/j.eswa.2025.129298.
[28] PANG Guansong,DING Choubo,SHEN Chunhua,et al.Explainable deep few-shot anomaly detection with deviation networks[EB/OL].(2021-08-01)[2025-07-05] .https://doi.org/10.48550/arXiv.2108.00462.
[29] SOMEPALLI G,GOLDBLUM M,SCHWARZSCHILD A,et al.SAINT: Improved neural networks for tabular data via row attention and contrastive pre-training[EB/OL].(2021-06-02)[2025-07-05] .https://doi.org/10.48550/arXiv.2106.01342.
[30] YUAN Yachao,HUANG Yu,WANG Jin.Adaptive NAD: Online and self-adaptive unsupervised network anomaly detector[EB/OL].(2025-07-02)[2025-07-05] .https://doi.org/10.48550/arXiv.2410.22967.
[31] TIAN Tian,ZHANG Chen,JIANG Bo,et al.Insider threat detection for specific threat scenarios[J].Cybersecurity,2025,8:17.DOI:10.1186/s42400-024-00321-w.
[32] YE Xiaoyun,CUI Huangrongbin,LUO Faqin,et al.Daily insider threat detection with hybrid TCN transformer architecture[J].Scientific Reports,2025,15:28590.DOI:10.1038/s41598-025-12063-x.