参考文献/References:
[1] MOEN E,BANNO D,KUDO T,et al.Deep learning for cellular image analysis[J].Nature Methods,2019,16(12).DOI:10.1038/s41592-019-0403-1.
[2] LALIT M,TOMANCAK P,JUG F.EmbedSeg: Embedding-based instance segmentation for biomedical microscopy data[J].Medical Image Analysis,2022,81:102523.DOI:10.1016/j.media.2022.102523.
[3] 王宜东,杜永兆,黎玲,等.基于细胞核引导的明场显微图像细胞分割方法[J].激光与光电子学进展,2023,60(14):145-156.DOI:10.3788/LOP222437.
[4] CAICEDO J C,GOODMAN A,KARHOHS K W,et al.Nucleus segmentation across imaging experiments: The 2018 data science bowl[J].Nature Methods,2019,16(12):1247-1253.DOI:10.1038/s41592-019-0612-7.
[5] EDLUND C,JACKSON T R,KHALID N,et al.LIVECell: A large-scale dataset for label-free livecell segmentation[J].Nature Methods,2021,18(9):1038-1045.DOI:10.1038/S41592-021-01249-6.
[6] 佟雷,吴梅,刘卓晟.坏死性凋亡在病毒感染性疾病中的研究进展[J].华侨大学学报(自然科学版),2025,46(3):241-247.DOI:10.11830/ISSN.1000-5013.202501026.
[7] H?RST F,REMPE M,HEINE L,et al.CellViT: Vision transformers for precise cell segmentation and classification[J].Medical Image Analysis,2024,94:103143.DOI:10.1016/j.media.2024.103143.
[8] LIN Hao,LIN Meimin,CHANG Weijie,et al.MSTA-YOLO: A novel retinal ganglion cell instancesegmentation method using a task-aligned coupled head and efficient multi-scale attention for glaucoma analysis[J].Biomedical Signal Processing and Control,2025,106:107695.DOI:10.1016/j.bspc.2025.107695.
[9] 李东明.医学显微细胞图像分割研究[D].长春:长春理工大学,2021.DOI:10.26977/d.cnki.gccgc.2021.000029.
[10] SHAKED N T,BOPPART S A,WANG Lihong,et al.Label-free biomedical optical imaging[J].Naturephotonics,2023,17(12):1031-1041.DOI:10.1038/s41566-023-01299-6.
[11] DU Yongzhao,LIU Bo,CHEN Haixin,et al.Label-free microscopic cell images adaptive enhancement via weighted fusion of bright, dark, and weak structure features[J].Biomedical Signal Processingand Control,2024,91:105973.DOI:10.1016/j.bspc.2024.105973.
[12] YIN Zhaozheng,KANADE T,CHEN Mei.Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation[J].Medical Image Analysis,2012,16(5):1047-1062.DOI:10.1016/j.media.2011.12.006.
[13] WANG Xinwei,WANG Hao,WANG Jinlu,et al.Single-shot isotropic differential interference contrast microscopy[J].Nature Communications,2023,14(1):2063.DOI:10.1038/s41467-023-37606-6.
[14] JIANG Wenchao,YIN Zhaozheng.Seeing the invisible in differential interference contrast microscopy images[J].Medical Image Analysis,2016,34:65-81.DOI:10.1016/j.media.2016.04.010.
[15] SCHWENDY M,UNGER R E,PAREKH S H.EVICAN: A balanced dataset for algorithm development in cell and nucleus segmentation[J].Bioinformatics,2020,36(12):3863-3870.DOI:10.1093/bioinformatics/btaa225.
[16] MA?KA M,ULMAN V,DELGADO-RODRíGUEZ P,et al.The cell tracking challenge: 10 years of objective benchmarking[J].Nature Methods,2023,20(7):1010-1020.DOI:10.1038/s41592-023-01879-y.
[17] ANTONELLI L,POLVERINO F,ALBU A,et al.ALFI: Cell cycle phenotype annotations of label-free time-lapse imaging data from cultured human cells[J].Scientific Data,2023,10(1):677.DOI:10.1038/s41597-023-02540-1.
[18] KHALID N,MUNIR M,EDLUND C,et al.DeepCeNS: An end-to-end pipeline for cell and nucleus segmentation in microscopic images[C]//International Joint Conference on Neural Networks.Shenzhen:IEEE Press,2021:1-8.DOI:10.1109/IJCNN52387.2021.9533624.
[19] ZHU Yanming,YIN Xuefei,MEIJERING E.A compound loss function with shape aware weight map for microscopy cell segmentation[J].IEEE Transactions on Medical Imaging,2022,42(5):1278-1288.DOI:10.1109/TMI.2022.3226226.
[20] WAN Zhijiang,LI Manyu,WANG Zihan,et al.CellT-Net: A composite transformer method for 2-D cell instance segmentation[J].IEEE Journal of Biomedical and Health Informatics,2023,28(2):730-741.DOI:10.1109/JBHI.2023.3265006.
[21] FINDER S E,AMOYAL R,TREISTER E,et al.Wavelet convolutions for large receptive fields[C]//European Conference on Computer Vision.Cham:Springer Nature,2024:363-380.
[22] MAO Anqi,MOHRI M,ZHONG Yutao.Cross-entropy loss functions: Theoretical analysis and applications[C]//International Conference on Machine Learning.Honolulu:PMLR,2023:23803-23828.
[23] LI Xiang,WANG Wenhai,WU Lijun,et al.Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J].Advances in Neural Information Processing Systems,2020,33:21002-21012.
[24] ZHANG Hao,ZHANG Shuaijie.Shape-IoU: More accurate metric considering bounding box shape and scale[EB/OL].(2024-01-02)[2025-07-02] .https://doi.org/10.48550/arXiv.2312.17663.
相似文献/References:
[1]杨天成,杨建红,陈伟鑫.图像抠图与copy-paste结合的数据增强方法[J].华侨大学学报(自然科学版),2023,44(2):243.[doi:10.11830/ISSN.1000-5013.202209025]
YANG Tiancheng,YANG Jianhong,CHEN Weixin.Data Enhancement Method Combining Image Matting and Copy-Paste[J].Journal of Huaqiao University(Natural Science),2023,44(5):243.[doi:10.11830/ISSN.1000-5013.202209025]
[2]赵崟昊,刘炳辰,杨建红,等.RGB-D多模态融合与深度特征增强的固废检测网络[J].华侨大学学报(自然科学版),2025,46(2):133.[doi:10.11830/ISSN.1000-5013.202410016]
ZHAO Yinhao,LIU Bingchen,YANG Jianhong,et al.Solid Waste Detection Network With RGB-D Multimodal Fusion and Deep Feature Enhancement[J].Journal of Huaqiao University(Natural Science),2025,46(5):133.[doi:10.11830/ISSN.1000-5013.202410016]