参考文献/References:
[1] 熊瑛子.石材镶嵌艺术在中国当代壁画创作中的运用[J].天工,2022,36(1):90-92.DOI:10.3969/j.issn.2095-7556.2022.01.024
[2] 熊瑛子.石材镶嵌艺术风格研究[J].美术文献,2019(5):9-11.DOI:10.16585/j.cnki.mswx.2019.05.005.
[3] 熊瑛子.石材镶嵌艺术材料与创作手法分析[J].艺术品鉴,2019,15(12):294-295.
[4] 陈瑶.中国传统家具镶嵌艺术及现代化技术的研究[D].长沙:中南林业科技大学,2006.
[5] 陈韫如.清代宫廷家具中的镶嵌工艺[J].文物鉴定与鉴赏,2022(8):116-119.DOI:10.20005/j.cnki.issn.1674-8697.2022.08.
[6] 李佳明.传统镶嵌工艺在当代漆艺中的运用[D].沈阳:鲁迅美术学院,2019.
[7] 杜金华.基于颜色特征和逻辑回归的饰面花岗石图像识别技术研究[D].厦门:华侨大学,2018.
[8] 康利娟.基于图像颜色的石材分类算法及测试平台研究与实现[D].武汉:武汉理工大学,2009.
[9] 杨杰,杨静宜.基于颜色直方图的石材图像检索[J].武汉理工大学学报(信息与管理工程版),2009,31(2):173-176.DOI:10.3963/j.issn.1007-144X.2009.02.001.
[10] 黄士真,耿栋.基于神经网络的建筑装饰石材智能分类研究: 以天然大理石分类为例[J].广西城镇建设,2023(2):90-97.DOI:10.3969/j.issn.1672-7045.2023.02.011.
[11] AGRAWAL N,GOVIL H.A deep residual convolutional neural network for mineral classification[J].Advances in Space Research,2023,71(8):3186-3202.DOI:10.1016/j.asr.2022.12.028.
[12] TROPEA M,FEDELE G,DE LUCA R,et al.Automatic stones classification through a CNN-based approach[J].Sensors,2022,22(16):6292.DOI:10.3390/s22166292.
[13] 刘晨,赵晓晖,梁乃川,等.基于ResNet50和迁移学习的岩性识别与分类研究[J].计算机与数字工程,2021,49(12):2526-2530.DOI:10.3969/j.issn.1672-9722.2021.12.020.
[14] 程志清.基于深度学习的工业机器人视觉引导方法研究[J].信息记录材料,2024,25(12):110-112.DOI:10.16009/j.cnki.cn13-1295/tq.2024.12.048.
[15] 檀为龙.深度强化学习在智能制造中的创新应用与趋势展望[J].中国战略新兴产业,2024(33):161-163.DOI:10.3778/j.issn.1002-8331.2008-0431.
[16] XIE Saining,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:5987-5995.DOI:10.1109/CVPR.2017.634.
[17] BOUDIAF A,BENLAHMIDI S,DAHANE A,et al.Development of hybrid models based on alexnet and machine learning approaches for strip steel surface defect classification[J].Journal of Failure Analysis and Prevention,2024,24(3):1376-1394.DOI:10.1007/s11668-024-01927-5.
[18] WANG Wei,ZHANG Chengwen,TIAN Jinge,et al.High-resolution radar target recognition via inception-based VGG(IVGG)networks[J].Computational Intelligence and Neuroscience,2020,2020(1):8893419.DOI:10.1155/2020/8893419.
[19] MAHAUR B,MISHRA K K,SINGH N.Improved residual network based on norm-preservation for visual recognition[J].Neural Networks,2023,157:305-322.DOI:10.1016/j.neunet.2022.10.023.