参考文献/References:
[1] 舒文华,欧阳惠卿.自动扶梯乘客行为智能感知和自主安全管理技术标准探讨[J].质量与标准化,2021,354(10):39-43.DOI:10.3969/j.issn.2095-0918.2021.10.015.
[2] 蒋儒浩.自动扶梯综合性能检测仪研制[D].合肥:合肥工业大学,2019.DOI:10.27101/d.cnki.ghfgu.2019.000056.
[3] 付春平.自动扶梯几起安全事故的共性分析与探讨[J].科技与创新,2023,217(1):82-84,89.DOI:10.15913/j.cnki.kjycx.2023.01.023.
[4] 张栓柱.基于事故树的商场电梯事故分析[J].消防界(电子版),2022,8(21):21-23.DOI:10.16859/j.cnki.cn12-9204/tu.2022.21.040.
[5] 解云蕾.自动扶梯安全探讨[J].中国科技信息,2022(3):64-66.DOI:10.3969/j.issn.1001-8972.2022.03.021.
[6] 李伟达,叶靓玲,郑力新,等.面向扶梯不安全行为的改进型深度学习检测算法[J].华侨大学学报(自然科学版),2022,43(1):119-126.DOI:10.11830/ISSN.1000-5013.202105059.
[7] 叶靓玲,李伟达,郑力新,等.结合目标检测与特征匹配的多目标跟踪算法[J].华侨大学学报(自然科学版),2021,42(5):661-669.DOI:10.11830/ISSN.1000-5013.202105018.
[8] YE Liangling,LI Weida,ZHENG Lixin,et al.Lightweight and deep appearance embedding for multiple object tracking[J].IET Computer Vision,2022,16(6):489-503.DOI:10.1049/cvi2.12106.
[9] 林志鸿,郑力新,曾远跃.采用空间依赖的MTDPN扶梯危险行为的姿态估计[J].华侨大学学报(自然科学版),2023,44(6):751-758.DOI:10.11830/ISSN.1000-5013.202305020.
[10] YAN Sijie,XIONG Yuanjun,LIN Dahua.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New Orleans:AAAI Press,2018:7444-7452.DOI:10.48550/arXiv.1801.07455.
[11] ZHANG Xikun,XU Chang,TIAN Xinmei,et al.Graph edge convolutional neural networks for skeleton-based action recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(8):3047-3060.DOI:10.48550/arXiv.1805.06184.
[12] SHI Lei,ZHANG Yifan,CHENG Jian,et al.Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:12026-12035.DOI:10.48550/arXiv.1805.07694.
[13] WEN Yuhui,GAO Lin,FU Hongbo,et al.Graph CNNs with motif and variable temporal block for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Honolulu:AAAI Press,2019:8989-8996.DOI:10.1609/aaai.v33i01.33018989.
[14] LI Bin,LI Xi,ZHANG Zhongfei,et al.Spatio-temporal graph routing for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Honolulu:AAAI Press,2019:8561-8568.DOI:10.1609/aaai.v33i01.33018561.
[15] LI Maosen,CHEN Siheng,CHEN Xu,et al.Actional-structural graph convolutional networks for skeleton based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:3595-3603.DOI:10.1109/CVPR.2019.01230.
[16] SHI Lei,ZHANG Yifan,CHENG Jian,et al.Skeleton-based action recognition with directed graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:7912-7921.DOI:10.1109/CVPR.2019.00810.
[17] LEE I,KIM D,KANG S,et al.Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice:IEEE Press,2017:1012-1020.DOI:10.1109/ICCV.2017.115.
[18] CHEN Yuxin,ZHANG Ziqi,YUAN Chunfeng,et al.Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE Press,2021:13359-13368.DOI:10.48550/arXiv.2107.12213.
[19] 袁正中,李灿东.复杂网络控制核心的进一步分析[J].闽南师范大学学报(自然科学版),2023,36(2):27-34.DOI:10.16007/j.cnki.issn2095-7122.2023.02.008.
[20] LIU Ziyu,ZHANG Hongwen,CHEN Zhenghao,et al.Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:143-152.DOI:10.1109/CVPR42600.2020.00022.
[21] SHAHROUDY A,LIU Jun,NG T T,et al.Ntu rgb+d: A large scale dataset for 3d human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:1010-1019.DOI:10.1109/CVPR.2016.115.
[22] DUAN Haodong,WANG Jiaqi,CHEN Kai,et al. Pyskl: Towards good practices for skeleton action recognition[C]//Proceedings of the 30th ACM International Conference on Multimedia.Nicosia:ACM Press,2022:7351-7354.DOI:10.48550/arXiv.2205.09443.
[23] SHI Lei,ZHANG Yifan,CHENG Jian,et al.Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[C]//IEEE Transactions on Image Processing.[S.l.]:IEEE Press,2020:9532-9545.DOI:10.1109/TIP.2020.3028207.
[24] LIU Ziyu,ZHANG Hongwen,CHEN Zhenghao,et al.Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:143-152.DOI:10.1109/CVPR42600.2020.00022.
[25] CHEN Yuxin,ZHANG Ziqi,YUAN Chunfeng,et al.Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE Press,2021:13359-13368.DOI:10.48550/arXiv.2107.12213.