[1]杨超祺,陈连健,方四宝,等.温度作用下高精电子厂房开洞华夫板的力学性能分析[J].华侨大学学报(自然科学版),2025,46(3):272-282.[doi:10.11830/ISSN.1000-5013.202501032]
 YANG Chaoqi,CHEN Lianjian,FANG Sibao,et al.Mechanical Performance Analysis of Perforated Waffle Plate in High-Precision Electronic Factory Building Under Temperature Effect[J].Journal of Huaqiao University(Natural Science),2025,46(3):272-282.[doi:10.11830/ISSN.1000-5013.202501032]
点击复制

温度作用下高精电子厂房开洞华夫板的力学性能分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第46卷
期数:
2025年第3期
页码:
272-282
栏目:
出版日期:
2025-05-20

文章信息/Info

Title:
Mechanical Performance Analysis of Perforated Waffle Plate in High-Precision Electronic Factory Building Under Temperature Effect
文章编号:
1000-5013(2025)03-0272-11
作者:
杨超祺1 陈连健2 方四宝2 向勇2 李海锋1
1. 华侨大学 土木工程学院, 福建 厦门 361021;2. 上海宝冶集团有限公司, 上海 201900
Author(s):
YANG Chaoqi1 CHEN Lianjian2 FANG Sibao2XIANG Yong2 LI Haifeng1
1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China; 2. Shanghai Baoye Group Limited Company, Shanghai 201900, China
关键词:
温度作用 开洞华夫板 有限元模拟 超长混凝土
Keywords:
temperature effect perforated waffle plate finite element simulation super-long concrete
分类号:
TU375
DOI:
10.11830/ISSN.1000-5013.202501032
文献标志码:
A
摘要:
为分析不设置伸缩缝的开洞华夫板受温度影响下楼板的应力及裂缝响应,采用ABAQUS有限元分析软件对开洞华夫板进行仿真模拟,对比工程实际,得到该类楼板在不同尺寸及温度变化下的应力、变形情况。结果表明:在日常温度变化下,核心区楼板均不超过计算应力限值,位移最大与应力集中主要出现在板柱节点处;随着混凝土强度上升,同温差下整体应力无明显变化,增量不大于2%,但楼板厚度的增加会导致应力突变及变形趋势的改变;考虑对跨度较大的钢筋混凝土楼板进行分块施工,合理控制板块间的温差为15~30 ℃,有利于整体浇筑后楼板的应力均匀分布。
Abstract:
In order to analyze the stress and crack response of the floor under temperature influence in perforated waffle plate without expansion joints, the ABAQUS finite element analysis software is used to simulate the perforated waffle plate, comparing with the engineering practice, the stress and deformation of this kind of floor under different sizes and temperature variations are obtained. The results show that under the daily temperature variation, the floor in the core area does not exceed the calculation stress limit, and the maximum displacement and stress concentration mainly appear at the slab-column joints. With the increase of concrete strength, the overall stress has no obvious change under the same temperature difference, and the increment is less than 2%, but the increase of floor thickness leads to the sudden change of stress and the change of deformation trend. Considering the block construction of the reinforced concrete floor with large span, the reasonable control of the temperature difference between plates within 15-30 ℃ is beneficial to the uniform stress distribution in the floor after monolithic pouring.

参考文献/References:

[1] 丁然,张亚朋,武维宏,等.超高性能混凝土华夫板受力性能试验研究与数值模拟[J].建筑结构学报,2024,45(8):93-107,117.DOI:10.14006/j.jzjgxb.2023.0558.
[2] 郑晓芬.超长预应力混凝土梁板结构温度收缩裂缝控制研究[D].上海:同济大学,2003.
[3] 郑伟,袁中夏,乔宏霞,等.考虑水化度影响的大体积混凝土温度场分析[J].材料导报,2024,38(增刊1):262-268.DOI:10.11896/js.20242124020108.
[4] 陈春超,陈士海,陈建福,等.地铁车站叠合墙内衬早龄期温度与应变演化规律[J].华侨大学学报(自然科学版),2024,45(2):193-200.DOI:10.11830/ISSN.1000-5013.202312041.
[5] 朱兆聪,梁汝鸣,葛序尧,等.气温骤降对超长混凝土结构底板温度应力的影响[J].建筑结构,2023,53(增刊1):1723-1727.DOI:10.19701/j.jzjg.23S1255.
[6] 盛海洋.考虑龄期影响的福州地区超声回弹综合测强曲线[J].华侨大学学报(自然科学版),2017,38(3):325-329.DOI:10.11830/ISSN.1000-5013.201703008.
[7] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国水利水电出版社,2012.
[8] 张寒硕,卜凡民,聂建国,等.超长混凝土框架结构温度场模拟与温度效应研究[EB/OL].(2023-11-28)[2025-01-12] .http://kns.cnki.net/kcms/detail/11.2595.O3.20231127.1457.047.html.
[9] 王冬晔,董毓利,王卫华,等.混凝土板柱结构抗火性能的有限元分析[J].华侨大学学报(自然科学版),2019,40(6):724-732.DOI:10.11830/ISSN.1000-5013.201905008.
[10] ZHU He,HU Yu,LI Qingbin,et al.Restrained cracking failure behavior of concrete due to temperature and shrinkage[J].Construction and Building Materials,2020,244:118318.DOI:10.1016/j.conbuildmat.2020.118318.
[11] HU Yehong,CHEN Jin,ZOU Feng,et al.A comparative study of temperature of mass concrete placed in August and November based on on-site measurement[J].Case Studies in Construction Materials,2021,15:e00694.DOI:10.1016/j.cscm.2021.e00694.
[12] LI Yan,NIE Lei,WANG Bo.Anumerical simulation of the temperature cracking propagation process when pouring mass concrete[J].Automation in Construction,2014,37:203-210.DOI:10.1016/j.autcon.2013.08.005.
[13] ZHANG Heng,SU Chao,CHEN Xiaohu,et al.Calculation of mass concrete temperature and creep stress under the influence of local air heat transfer[J].Computer Modeling in Engineering and Sciences,2024,140(3):2977-3000.DOI:10.32604/cmes.2024.047972.
[14] ZHAO Yuqin,LI Gaosheng,FAN Caixia,et al.Effect of thermal parameters on hydration heat temperature and thermal stress of mass concrete[J].Advances in Materials Science and Engineering,2021,2021:1-16.DOI:10.1155/2021/5541181.
[15] OUYANG Jianshu,CHEN Xianming,HUANGFU Zehua,et al.Application of distributed temperature sensing for cracking control of mass concrete[J].Construction and Building Materials,2019,197:778-791.DOI:10.1016/j.conbuildmat.2018.11.221.
[16] 范重,陈巍,李夏,等.超长框架结构温度作用研究[J].建筑结构学报,2018,39(1):136-145.DOI:10.14006/j.jzjgxb.2018.01.016.
[17] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.
[18] 中国建筑科学研究院.混凝土结构设计规范: GB 50010-2010[S].北京:中国建筑工业出版社,2010.
[19] 江正荣.建筑施工计算手册[M].北京:中国建筑工业出版社,2007.

备注/Memo

备注/Memo:
收稿日期: 2025-01-20
通信作者: 李海锋(1983-),男,教授,博士,博士生导师,主要从事钢结构的研究。E-mail:lihaifeng@hqu.edu.cn。
基金项目: 福建省科技计划项目对外合作项目(2024I0015)
更新日期/Last Update: 2025-05-20