参考文献/References:
[1] 卞苏阳,严云洋,龚成张,等.基于CXANet-YOLO的火焰检测方法[J].南京大学学报(自然科学版),2023,59(2):295-301.DOI:10.13232/j.cnki.jnju.2023.02.012.
[2] 周兴华,陈西江,羊海东,等.动态卷积YOLOv5的视频火焰检测算法[J].测绘科学,2023,48(4):106-118.DOI:10.16251/j.cnki.1009-2307.2023.04.012.
[3] 李伟达,叶靓玲,郑力新,等.面向扶梯不安全行为的改进型深度学习检测算法[J].华侨大学学报(自然科学版),2022,43(1):119-126.DOI:10.11830/ISSN.1000-5013.202105059.
[4] SATHISHKUMAR V E,CHO J,SUBRAMANIAN M,et al.Forest fire and smoke detection using deep learning-based learning without forgetting[J].Fire Ecology,2023,19(1):9.DOI:10.1186/s42408-022-00165-0.
[5] 崔志亮,曹苏群.基于改进YOLOv5的复杂环境下火灾检测方法[J].电脑与信息技术,2024,32(1):23-27,46.DOI:10.19414/j.cnki.1005-1228.2024.01.019.
[6] 杜建华,张认成.LVQ神经网络的红外光谱火灾早期预警算法[J].华侨大学学报(自然科学版),2011,32(6):607-610.DOI:10.11830/ISSN.1000-5013.2011.06.0607.
[7] CHENG Guangtao,CHEN Xue,WANG Chenyi,et al.Visual fire detection using deep learning: A survey[J].Neurocomputing,2024,596:127975.DOI:10.1016/j.neucom.2024.127975.
[8] 蔡春兵,吴翠平,徐鲲鹏.基于深度学习的视频火焰识别方法[J].信息技术与网络安全,2020,39(12):44-51.DOI:10.19358/j.issn.2096-5133.2020.12.008.
[9] 王勇智,谭杨磊,韩锐,等.基于分离YUV颜色通道的火焰提取方法[J].科学技术创新,2020(25):42-43.
[10] 何建,黄亦豪,薛黎明.基于YCbCr和帧间差分法的火焰分割算法[J].现代计算机,2023,29(18):49-52.
[11] ZHANG Heng,SHAO Faming,CHU Weijun,et al.Faster R-CNN based on frame difference and spatiotemporal context for vehicle detection[J].Signal Image and Video Processing,2024,18:7013-7027.DOI:10.1007/s11760-024-03370-3.
[12] YADAV A,KUMAR E.Objectdetection on real-time videowith fpn and modified mask rcnnbased on inception-resnet V2[J].Wireless Personal Communications,2024,138(4):2065-2090.DOI:10.1007/s11277-024-11539-9.
[13] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD: Single shot multibox detector[M].Cham:Springer International Publishing,2016:21-37.DOI:10.1007/978-3-319-46448-0_2.
[14] REDMON J,DIVVALA S,GIRSHICK R,et al.You onlylook once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:779-788.DOI:10.48550/arXiv.1506.02640.
[15] REDMON J,FARHADI A.YOLOv3: An incremental improvement[EB/OL].(2018-04-08)[2024-02-21] .https://arxiv.org/pdf/1804.02767.
[16] BOCHKOVSKIY A,WANG C Y,LIAO H M.YOLOv4: Optimalspeed and accuracy of object detection[EB/OL].(2020-04-23)[2024-02-21] .https://www.researchgate.net/publication/340883401_YOLOv4_Optimal_Speed_and_Accuracy_of_Object_Detection.
[17] QIN Yueyan,CAO Jiangtao,JI Xiaofei.Fire detection method based on depthwise separable convolution and YOLOv3[J].International Journal of Automation and Computing,2021,18(2):300-310.DOI:10.1007/s11633-020-1269-5.
[18] 汪子健,高焕兵,侯宇翔,等.改进YOLOX-nano的火灾火焰烟雾检测[J].计算机系统应用,2023,32(3):265-274.DOI:10.15888/j.cnki.csa.009000.
[19] 曹康壮,焦双健.融合注意力机制的轻量级火灾检测模型[J].消防科学与技术,2024,43(3):378-383.
[20] 陈义啸,沈景凤,仲梁维.基于改进YOLOv8的森林火灾检测算法研究[J].软件工程,2024,27(2):49-54.DOI:10.19644/j.cnki.issn2096-1472.2024.002.010.
[21] 王菲.基于火焰识别的早期火灾探测技术研究[D].广州:华南理工大学,2013.
[22] 陈智铭,谢维波,许华滨.利用图像频度特征的稀薄烟雾检测算法[J].华侨大学学报(自然科学版),2014,35(2):151-155.DOI:10.11830/ISSN.1000-5013.2014.02.0151.
[23] Lü Changzhi,ZHOU Haiyong,CHEN Yu,et al.A lightweight fire detection algorithm for small targets based on YOLOv5s[J].Scientific Reports,2024,14(1):14104.DOI:10.1038/s41598-024-64934-4.
[24] TALAAT F M,ZAINELDIN H.An improved fire detection approach based on YOLO-v8 for smart cities[J].Neural Computingand Applications,2023,35(28):20939-20954.DOI:10.1007/s00521-023-08809-1.
[25] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//lEEE Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE Press,2022:7464-7475.DOI:10.48550/arXiv.2207.02696.
[26] HAN Kai,WANG Yunhe,TIAN Qi,et al.Ghostnet: More features from cheapoperations[C]//IEEE/CVF Conference on Computer Visionand Pattern Recognition.New York:IEEE Press,2020:1580-1589.DOI:10.48550/arXiv.1911.11907.
[27] LI Jichao,GUO Shengyu,KONG Liulin,et al.An improved YOLOv3-tiny method for fire detection in the construction industry[C]//E3S Web of Conference.[S.l.]:EEM,2021:03069.DOI:10.1051/e3sconf/202125303069.
[28] 谌颃,张袖斌,肖斌,等.基于Faster-R CNN深度学习算法的图像识别技术研究[J].机器人产业,2024(3):98-102.DOI:10.19609/j.cnki.cn10-1324/tp.2024.03.019.
[29] 郑文秀,赵兴娜.基于SSD算法的人脸检测算法研究[J].现代信息科技,2024,8(19):17-22.DOI:10.19850/j.cnki.2096-4706.2024.19.004.
[30] ZHANG Long,LI Jiaming,ZHANG Fuquan.An efficient forest fire target detection model based on improved YOLOv5[J].Fire-Switzerland,2023,6(8):291.DOI:10.3390/fire6080291.