[1]常东鑫,韩勇,叶伟宏,等.分布式后驱电动客车电子差速控制策略[J].华侨大学学报(自然科学版),2025,(1):14-22.[doi:10.11830/ISSN.1000-5013.202407004]
 CHANG Dongxin,HAN Yong,YE Weihong,et al.Electronic Differential Control Strategy for Distributed Rear-Drive Electric Bus[J].Journal of Huaqiao University(Natural Science),2025,(1):14-22.[doi:10.11830/ISSN.1000-5013.202407004]
点击复制

分布式后驱电动客车电子差速控制策略()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
期数:
2025年第1期
页码:
14-22
栏目:
出版日期:
2025-01-10

文章信息/Info

Title:
Electronic Differential Control Strategy for Distributed Rear-Drive Electric Bus
文章编号:
1000-5013(2025)01-0014-09
作者:
常东鑫1 韩勇12 叶伟宏3 石金明1 申水文12
1. 厦门理工学院 机械与汽车工程学院, 福建 厦门 361024;2. 厦门理工学院 福建省客车先进设计与制造重点实验室, 福建 厦门 361024;3. 厦门金龙汽车新能源科技有限公司, 福建 厦门 361021
Author(s):
CHANG Dongxin1 HAN Yong12 YE Weihong3 SHI Jinming1 SHEN Shuiwen12
1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; 2. Fujian Key Laboratory of Bus Advanced Design and Manufacture, Xiamen University of Technology, Xiamen 361024, China; 3. Xiamen King Long Motor New Energy Technology Limited Company, Xiamen 361021, China
关键词:
电子差速控制 分布式后驱电动客车 操纵稳定性 电机选型 双层式
Keywords:
electronic differential control distributed rear drive electric bus handling stability motor selection dual layer type
分类号:
U461.6
DOI:
10.11830/ISSN.1000-5013.202407004
文献标志码:
A
摘要:
为提高转向工况下分布式后驱电动客车操纵稳定性,提出一种双层式电子差速控制策略。上层控制策略根据车辆参考模型和实际状态参数,以质心侧偏角和横摆角速度为控制目标,通过模糊PI控制器计算得到附加横摆力矩。下层控制策略先以驱动轮的垂直载荷比例作为驱动力分配依据,再将上层控制中计算得到的附加横摆力矩分配给轮边电机。考虑到实际电机能够提供的最大转矩是有限值,对电机进行选型以确定电子差速控制策略输出的转矩范围。在Simulink和Trucksim中搭建联合仿真环境验证电子差速控制策略的可靠性。结果表明:在双移线工况下,该电子差速控制策略相比于等转矩分配策略,在方向盘回转时车辆的质心侧偏角最高减小了69.8%,横摆角速度最高减小了8.2%;在方向盘角阶跃工况下,该电子差速控制策略相比于等转矩分配策略,质心侧偏角能够减小83.7%,横摆角速度能够减小9.4%。
Abstract:
To improve the handling stability of a distributed rear-drive electric bus under steering conditions, a dual layer electronic differential control strategy was proposed. The upper layer control strategy was based on the vehicle reference model and actual state parameters, targeting the center of mass lateral deflection angle and yaw rate as the control objectives, and the additional yaw moment was calculated using a fuzzy PI controller. The lower control strategy first took the vertical load ratio of the driving wheel as the basis for driving force distribution, and then allocated the additional yaw moment, determined in the upper control layer, to the wheel side motor. Considering that the maximum torque provided by the actual motor was limited, motor selection was carried out to determine the torque range for the output of the electronic differential control strategy. A joint simulation environment was built in Simulink and Trucksim to verify the reliability of this strategy. The results indicated that under double lane change conditions,compared to the equal torque distribution stra-tegy, the electronic differential control strategy reduced the maximum center of mass lateral deflection angle by 69.8% and the maximum yaw rate by 8.2% during steering wheel rotation. Under the steering wheel angle step conditions, this control strategy could reduce the center of mass lateral deflection angle by 83.7% and the yaw rate by 9.4% compared to the equal torque distribution strategy.

参考文献/References:

[1] 章恒亮,花为.分布式驱动系统用轮毂电机及其技术综述[J].中国电机工程学报,2024,44(7):2871-2886.DOI:10.13334/j.0258-8013.pcsee.222954.
[2] 臧怀泉,戴彦,张素燕,等.一种基于相对滑移率的电动汽车电子差速控制方法研究[J].机械工程学报,2017,53(16):112-119.DOI:10.3901/JME.2017.16.112.
[3] 王亚楠,严世榕,吕兵兵,等.分布式驱动电动汽车电子差速系统仿真研究[J].机电工程,2018,35(10):1128-1132.DOI:10.3969/j.issn.1001-4551.2018.10.021.
[4] GHEZZI M K,DòRIA-CEREZO A,OLM J M.Yaw moment MRAC with optimal torque vectoring for a four in-wheel motor EV[C]//IEEE International Conference on Industrial Technology.Lyon:IEEE Press,2018:1820-1825.DOI:10.1109/ICIT.2018.8352460.
[5] 裴晓飞,刘志厅,陈祯福,等.分布式驱动电动汽车的差速转向控制及其适用性[J].汽车安全与节能学报,2019,10(4):423-432.DOI:10.3969/j.issn.1674-8484.2019.04.003.
[6] GUO Xiangrong,CHEN Yi,LI Hong.Research on steering stability control of electric vehicle driven by dual in-wheel motor[C]//10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems.Xi’an:IEEE Press,2020:394-399.DOI:10.1109/CYBER50695.2020.9279154.
[7] 赵树恩,胡洪银,景东印.AFS/DYC协调控制的分布式驱动电动汽车稳定性控制[J].华侨大学学报(自然科学版),2021,42(5):571-579.DOI:10.11830/ISSN.1000-5013.202010015.
[8] 彭晓燕,邢星飞,崔庆佳,等.分布式电动汽车驱动力分配控制方法研究[J].汽车工程,2022,44(7):1059-1068.DOI:10.19562/j.chinasae.qcgc.2022.07.012.
[9] 刘文营,刘伟,崔晓川.二自由度车辆动力学模型的扩展研究[J].中国测试,2016,42(增刊2):76-79.
[10] 余志生.汽车理论[M].北京:机械工业出版社,2018.
[11] MA Li,CHENG Chang,GUO Jianfei,et al.Direct yaw-moment control of electric vehicles based on adaptive sliding mode[J].Mathematical Biosciences and Engineering,2023,20(7):13334-13355.DOI:10.3934/mbe.2023594.
[12] 杨年炯,宋英杰,肖旺.某型纯电动汽车动力系统匹配及优化研究[J].中国工程机械学报,2023,21(6):557-561.DOI:10.15999/j.cnki.311926.2023.06.012.
[13] 郭金刚,董昊轩.四轮毂电机驱动电动汽车动力系统优化匹配[J].公路交通科技,2019,36(7):150-158.DOI:10.3969/j.issn.1002-0268.2019.07.019.
[14] 李胜琴,闫祥伟,金丽彤.分布式驱动电动汽车横摆稳定性控制策略研究[J].重庆理工大学学报(自然科学),2021,35(5):65-73.DOI:10.3969/j.issn.1674-8425(z).2021.05.009.
[15] TAHAMI F,KAZEMI R,FARHANGHI S.A novel driver assist stability system for all-wheel-drive electric vehicles[J].IEEE Transactions on Vehicular Technology,2003,52(3):683-692.DOI:10.1109/TVT.2003.811087.
[16] 李以农,胡一明,邹桃.轮毂电机驱动电动汽车横摆稳定性控制[J].重庆大学学报,2017,40(12):24-34.DOI:10.11835/j.issn.1000-582X.2017.12.004.
[17] BORASE R P,MAGHADE D K,SONDKAR S Y,et al.A review of PID control, tuning methods and applications[J].International Journal of Dynamics and Control,2021,9:818-827.DOI:10.1007/s40435-020-00665-4.
[18] CSISZáR O,CSISZáR G,KOSHELEVA O,et al.Why fuzzy control is often more robust(and smoother): A theoretical explanation[C]//IEEE Symposium Series on Computational Intelligence.Mexico City:IEEE Press,2023:501-505.DOI:10.1109/SSCI52147.2023.10372014.
[19] HU Tangqing,ZHANG Xuxiu.Simulation of PMSM vector control system based on fuzzy PI controller[C]//2019 IEEE International Conference on Power, Intelligent Computing and Systems.Shenyang:IEEE Press,2019:111-114.DOI:10.1109/ICPICS47731.2019.8942439.

备注/Memo

备注/Memo:
收稿日期: 2024-07-10
通信作者: 韩勇(1984-),男,教授,博士,主要从事汽车智能安全、系统安全的研究。E-mail:yonghan@xmut.edu.cn。
基金项目: 国家重点研发计划(2023YFB3406500); 福建省技术创新重点攻关及产业化项目(2023G048, 2023G013)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2025-01-20