参考文献/References:
[1] 高杨.长输管道自动焊接设备及技术发展探究[J].石化技术,2022,29(12):219-221.
[2] BARSOUM Z,JONSSON B.Influence of weld quality on the fatigue strength in seam welds[J].Engineering Failure Analysis,2011,18(3):971-979.DOI:10.1016/j.engfailanal.2010.12.001.
[3] GIRSHICK R,DONAHUE J,DARRELL T,et al.Region-based convolutional networks for accurate object detection and segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(1):142-158.DOI:10.1109/TPAMI.2015.2437384.
[4] GAVRILESCU R,ZET C,FOAL U C,et al.Faster R-CNN: An approach to real-time object detection[C]//2018 International Conference and Exposition on Electrical and Power Engineering.Lasi:IEEE Press,2018:0165-0168.DOI:10.1109/ICEPE.2018.8559776.
[5] KONG Tao,YAO Anbang,CHEN Yurong,et al.Hypernet: Towards accurate region proposal generation and joint object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:845-853.DOI:10.1109/CVPR.2016.98.
[6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:779-788.DOI:10.1109/CVPR.2016.91.
[7] REDMON J,FARHADI A.YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:7263-7271.DOI:10.1109/CVPR.2017.690.
[8] REDMON J,FARHADI A.YOLOV3: An incremental improvement[EB/OL].(2018-04-08)[2024-01-03] .https://arxiv.org/abs/1804.02767.
[9] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD: Single shot multibox detector[C]//Computer Vision-ECCV 2016: 14th European Conference.Cham:Springer International Publishing,2016:21-37.DOI:10.1007/978-3-319-46448-0_2.
[10] LIU Weipeng,SHAN Shengqi,CHEN Haiyong,et al.X-ray weld defect detection based on AF-RCNN[J].Welding in the World,2022,66(6):1165-1177.DOI:10.1007/s40194-022-01281-w.
[11] CHEN Yongbin,WANG Jingran,WANG Guitang.Intelligent welding defect detection model on improved R-CNN[J].IETE Journal of Research,2023,69(12):9235-9244.DOI:10.1080/03772063.2022.2040387.
[12] LIU Moyun,CHEN Youping,XIE Jingming,et al.LF-YOLO: A lighter and faster YOLO for weld defect detection of X-ray image[J].IEEE Sensors Journal,2023,23(7):7430-7439.DOI:10.1109/JSEN.2023.3247006.
[13] ZHANG Yi,NI Qingjian.A novel weld-seam defect detection algorithm based on the S-YOLO model[J].Axioms,2023,12(7):697.DOI:10.3390/axioms12070697.
[14] 程松,杨洪刚,徐学谦,等.基于YOLOv5的改进轻量型X射线铝合金焊缝缺陷检测算法[J].中国激光,2022,49(21):2104005.DOI:10.3788/CJL202249.2104005.
[15] YANG Jun,FU Bo,ZENG Jinquan,et al.YOLO-Xweld: Efficiently detecting pipeline welding defects in X-ray images for constrained environments[C]//International Joint Conference on Neural Networks.Padua:IEEE Press,2022:1-7.DOI:10.1109/IJCNN55064.2022.9892765.
[16] HU Jie,WANG Zhangbin,CHANG Minjie,et al.Psg-YOLOV5: A paradigm for traffic sign detection and recognition algorithm based on deep learning[J].Symmetry,2022,14(11):2262.DOI:10.3390/sym14112262.
[17] LI Hulin,LI Jun,WEI Hanbing,et al.Slim-neck by GSConv: A lightweight-design for real-time detector architectures [J].Journal of Real-Time Image Processing,2024,21(3):62.DOI:10.1007/s11554-024-01436-6.
[18] WANG Jiaqi,CHEN Kai,XU Rui,et al.Carafe: Content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE Press,2019:3007-3016.DOI:10.1109/ICCV.2019.00310.
[19] WAN Dahang,LU Rongsheng,SHEN Siyuan,et al.Mixed local channel attention for object detection[J].Engineering Applications of Artificial Intelligence,2023,123:106442.DOI:10.1016/j.engappai.2023.106442.
[20] MERY D,RIFFO V,ZSCHERPEL U,et al.GDXray: The database of X-ray images for nondestructive testing[J].Journal of Nondestructive Evaluation,2015,34(4):42.DOI:10.1007/s10921-015-0315-7.
[21] HUANG Hejun,CHEN Zuguo,ZOU Ying,et al.Channel prior convolutional attention for medical image segmentation[EB/OL].(2023-06-08)[2024-01-03] .https://arxiv.org/abs/2306.05196.
[22] LAU K W,PO L M,REHMAN Y A U.Large separable kernel attention: Rethinking the large kernel attention design in cnn[J].Expert Systems with Applications,2024,236:121352.DOI:10.1016/j.eswa.2023.121352.
[23] WOO S H,PARK J,LEE J Y,et al.Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.Cham:Springer International Publishing,2018:3-19.DOI:10.1007/978-3-030-01234-2_1.
[24] GUO Menghao,LU Chengze,HOU Qibin,et al.Segnext: Rethinking convolutional attention design for semantic segmentation[J].Advances in Neural Information Processing Systems,2022,35:1140-1156.DOI:10.48550/arXiv.2209.08575.