[1]甘林火,湛云,严思恩,等.乙二醇对低共熔溶剂改性木质素制酚醛树脂胶黏剂的影响[J].华侨大学学报(自然科学版),2024,45(5):642-648.[doi:10.11830/ISSN.1000-5013.202404003]
 GAN Linhuo,ZHAN Yun,YAN Sien,et al.Effect of Ethylene Glycol on Preparation of Phenolic Resin Adhesive Using Modified Lignin via Deep Eutectic Solvent[J].Journal of Huaqiao University(Natural Science),2024,45(5):642-648.[doi:10.11830/ISSN.1000-5013.202404003]
点击复制

乙二醇对低共熔溶剂改性木质素制酚醛树脂胶黏剂的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第5期
页码:
642-648
栏目:
出版日期:
2024-09-20

文章信息/Info

Title:
Effect of Ethylene Glycol on Preparation of Phenolic Resin Adhesive Using Modified Lignin via Deep Eutectic Solvent
文章编号:
1000-5013(2024)05-0642-07
作者:
甘林火12 湛云1 严思恩1 何昌雍3
1. 华侨大学 化工学院, 福建 厦门 361021;2. 华侨大学 生物质低碳转化福建省高校重点实验室, 福建 厦门 361021;3. 寰宝工场(福建)新能源有限公司, 福建 南平 353099
Author(s):
GAN Linhuo12 ZHAN Yun1 YAN Sien1 HE Changyong3
1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; 2. Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China; 3. Huanbao Gongchang(Fujian)New Energy Limited Company, Nanping 353099, China
关键词:
毛竹 木质素 低共熔溶剂 酚醛树脂胶黏剂
Keywords:
moso bamboo lignin deep eutectic solvent phenolic resin adhesive
分类号:
TQ314.2
DOI:
10.11830/ISSN.1000-5013.202404003
文献标志码:
A
摘要:
采用氯化胆碱、甲酸和乙二醇(EG)合成三元酸性低共熔溶剂(TADES),利用傅里叶变换红外光谱(FT-IR)、二维核磁共振波谱(HSQC-NMR)和热重分析(TGA)等测试技术,分别考察TADES中EG质量分数对改性毛竹碱木质素(MBL)结构及其制木质素基酚醛树脂(LPF)胶黏剂性能的影响。结果表明:改性MBL保留了木质素特征结构,且出现羧基;当EG质量分数为15.0%时,改性MBL(DL-EG(15.0%))结构中紫丁香基结构单元摩尔分数减少,愈创木基和对羟基苯丙烷结构单元摩尔分数增加,其热稳定性得到提高;相较于MBL,EG质量分数对LPF胶黏剂黏度和pH值没有明显影响,但EG的加入提高了LPF胶黏剂的胶合强度,降低了游离甲醛含量;采用DL-EG(15.0%)制备LPF胶黏剂的固含量增加,且性能较优,其胶合强度高达3.25 MPa,游离甲醛含量仅为0.01%。
Abstract:
A ternary acidic deep eutectic solvent(TADES)was synthesized using choline chloride, formic acid and ethylene glycol(EG), and the effect of EG mass fraction in TADES on the structure of modified moso bamboo alkali lignin(MBL)and the properties of lignin-phenol-formaldehyde(LPF)adhesive was investigated respectively using Fourier transform infrared spectroscopy(FT-IR), two dimensional nuclear magnetic resonance(HSQC-NMR)spectroscopy, thermogravimetric analysis(TGA),et al. The results show that the modified MBL retains the characteristic structure of lignin, and the carboxyl groups appear. When EG mass fraction is 15.0%, the mole fraction of syringyl structure unit in modified MBL(DL-EG(15.0%))structure decreases, and the mole fractions of guaiacyl and p-hydroxyphenylpropane structure unit increase with improved thermal stability. Compared with MBL, EG mass fraction has no obvious influences on viscosity and pH value of LPF adhesive, but the addition of EG improves the bonding strength of LPF adhesive and reduces the free formaldehyde content. The solid content of LPF adhesive prepared by DL-EG(15.0%)increases and its performance is better with bonding strength as high as 3.25 MPa and free formaldehyde content only 0.01%.

参考文献/References:

[1] SONG Shushan,XU Zhongbin,ZHEN Xiang,et al.Preparation of lignosulfonate-based phenol formaldehyde foam with excellent thermal performance[J].Macromolecular Chemistry and Physics,2022,223(20):2200159.DOI:10.1002/macp.202200159.
[2] RAGAUSKAS A J,BECKHAM G T,BIDDY M J,et al.Lignin valorization: Improving lignin processing in the biorefinery[J].Science,2014,344(6158):1246843.DOI:10.1126/science.1246843.
[3] CHENG Shuna,YUAN Zhongshun,LEITCH M,et al.Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio[J].Industrial Crops and Products,2013,44:315-322.DOI:10.1016/j.indcrop.2012.10.033.
[4] STüCKER A,SCHüTT F,SAAKE B,et al.Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: Utilization in lignin-phenol-formaldehyde resins[J].Industrial Crops and Products,2016,85:300-308.DOI:10.1016/j.indcrop.2016.02.062.
[5] LI Jiongjiong,WANG Wen,ZHANG Shifeng,et al.Preparation and characterization of lignin demethylated at atmospheric pressure and its application in fast curing biobased phenolic resins[J].RSC Advances,2016,6(71):67435-67443.DOI:10.1039/c6ra11966b.
[6] YANG Sheng,FAN Dongbin,LI Gaiyun.Analysis of phenolic compounds obtained from bamboo microwave liquefaction for fast-curing phenol-formaldehyde resin preparation[J].Journal of Applied Polymer Science,2019,136(9):46952.DOI:10.1002/app.46952.
[7] FENG Shanghuan,SHUI Tao,WANG Haoyu,et al.Properties of phenolic adhesives formulated with activated organosolv lignin derived from cornstalk[J].Industrial Crops and Products,2021,161:113225.DOI:10.1016/j.indcrop.2020.113225.
[8] YOUNESI-KORDKHEILI H.Maleated lignin coreaction with phenol-formaldehyde resins for improved wood adhesives performance[J].International Journal of Adhesion and Adhesives,2022,113:103080.DOI:10.1016/j.ijadhadh.2021.103080.
[9] AREFMANESH M,NIKAFSHAR S,MASTER E R,et al.From acetone fractionation to lignin-based phenolic and polyurethane resins[J].Industrial Crops and Products,2022,178:114604.DOI:10.1016/j.indcrop.2022.114604.
[10] RODRIGUES J S,DE FREITAS A D S M,MACIEL C C,et al.Selection of kraft lignin fractions as a partial substitute for phenol in synthesis of phenolic resins: Structure-property correlation[J].Industrial Crops and Products,2023,191:115948.DOI:10.1016/j.indcrop.2022.115948.
[11] BANSODE A,VILLARREAL L A P,WANG Yuyang,et al.Kraft lignin periodate oxidation for biobased wood panel resins[J].ACS Applied Polymer Materials,2023,5(6):4118-4126.DOI:10.1021/acsapm.3c00324.
[12] YOUNESI-KORDKHEILI H,PIZZI A.Lignin-based wood adhesives: A comparison between the influence of soda and kraft lignin[J].International Journal of Adhesion and Adhesives,2023,121:103312.DOI:10.1016/j.ijadhadh.2022.103312.
[13] ABBOTT A P,BOOTHBY D,CAPPER G,et al.Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids[J].Journal of the American Chemical Society,2004,126(29):9142-9147.DOI:10.1021/ja048266j.
[14] WANG Zhiwen,LIU Yongzhuang,BARTA K,et al.The effect of acidic ternary deep eutectic solvent treatment on native lignin[J].ACS Sustainable Chemistry & Engineering,2022,10(38):12569-12579.DOI:10.1021/acssuschemeng.2c02954.
[15] FRANCISCO M,VAN DEN B A,KROON M C.New natural and renewable low transition temperature mixtures(LTTMs): Screening as solvents for lignocellulosic biomass processing[J].Green Chemistry,2012,14(8):2153-2157.DOI:10.1039/c2gc35660k.
[16] EE L Y,TAN Y K,MIAO Jiapei,et al.High-purity lignin from selective biomass fractionation with ternary deep eutectic solvents[J].Green Chemistry,2023,25(8):3137-3151.DOI:10.1039/d3gc00080j.
[17] TAN Jinyu,YU Dayong,YUAN Junfa,et al.Efficient delignification of wheat straw for microbial lipid production enabled by a novel ternary deep eutectic solvent containing ethylene glycol[J].Fuel,2023,347:128485.DOI:10.1016/j.fuel.2023.128485.
[18] DUAN Congjia,HAN Xu,CHANG Yuanhang,et al.A novel ternary deep eutectic solvent pretreatment for the efficient separation and conversion of high-quality gutta-percha, value-added lignin and monosaccharide from Eucommia ulmoides seed shells[J].Bioresource Technology,2023,370:128570.DOI:10.1016/j.biortech.2022.128570.
[19] HONG Shu,LIAN Hailan,SUN Xiang,et al.Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive[J].RSC Advances,2016,6(92):89599-89608.DOI:10.1039/c6ra18290a.
[20] ZHANG Yuling,REN Hongwei,Li Baochai,et al.Mechanistic insights into the lignin dissolution behavior in amino acid based deep eutectic solvents[J].International Journal of Biological Macromolecules,2023,242(2):124829.DOI:10.1016/j.ijbiomac.2023.124829.
[21] WANG Shuizhong,LI Wenxin,YANG Yueqin,et al.Unlocking structure-reactivity relationships for catalytic hydrogenolysis of lignin into phenolic monomers[J].ChemSusChem,2020,13(17):4548-4556.DOI:10.1002/cssc.202000785.
[22] CHEN Zhu,BAI Xianglan,LUSI A,et al.Insights into structural changes of lignin toward tailored properties during deep eutectic solvent pretreatment[J].ACS Sustainable Chemistry & Engineering,2020,8(26):9783-9793.DOI:10.1021/acssuschemeng.0c01361.

相似文献/References:

[1]徐文玉,王玉万.蔗渣木质纤维成分的系统分析法研究[J].华侨大学学报(自然科学版),1986,7(3):321.[doi:10.11830/ISSN.1000-5013.1986.03.0321]
 Xu wenyu,wang Yuwan.A Systematic Analytical Method for Lignocellulose in Bagasse[J].Journal of Huaqiao University(Natural Science),1986,7(5):321.[doi:10.11830/ISSN.1000-5013.1986.03.0321]

备注/Memo

备注/Memo:
收稿日期: 2024-04-02
通信作者: 甘林火(1979-),女,副教授,博士,主要从事木质生物质资源化利用的研究。E-mail:lhgan401@126.com。
基金项目: 福建省南平市科技计划重点项目(N2022B001, N2022B002); 华侨大学先进碳转化技术研究院开放基金资助项目(AACCT0002)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2024-09-20