参考文献/References:
[1] LIU Linxia,LI Jinlong,GAI Yuanming,et al.Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli[J].Nature Communications,2023,14(1):5304.DOI:10.1038/s41467-023-40928-0.
[2] DU Yiling,RYAN K.Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products[J].Natural Product Reports,2019,36(3):430-457.DOI:10.1039/c8np00049b.
[3] LIANG Jing,HAN Qian,TAN Yang,et al.Current advances on structure-function relationships of pyridoxal 5’-phosphate-dependent enzymes[J].Frontiers in Molecular Biosciences,2019,6:4.DOI:10.3389/fmolb.2019.00004.
[4] DHERBASSY Q,MAYER R,MUCHOWSKA K,et al.Metal-pyridoxal cooperativity in nonenzymatic transamination[J].Journal of the American Chemical Society,2023,145(24):13357-13370.DOI:10.1021/jacs.3c03542.
[5] STACH K,STACH W,AUGOFF K.Vitamin B6 in health and disease[J].Nutrients,2021,13(9):3229.DOI:10.3390/nu13093229.
[6] WILSON M,PLECKO B,MILLS P,et al.Disorders affecting vitamin B6 metabolism[J].Journal of Inherited Metabolic Disease,2019,42(4):629-646.DOI:10.1002/jimd.12060.
[7] KUMRUNGSEE T,ZHANG Peipei,CHARTKUL M,et al.Potential role of vitamin B6 in ameliorating the severity of COVID-19 and its complications[J].Frontiers in Nutrition,2020,7:562051.DOI:10.3389/fnut.2020.562051.
[8] ITO T.Role of the conserved pyridoxal 5’-phosphate-binding protein YggS/PLPBP in vitamin B6 and amino acid homeostasis[J].Bioscience, Biotechnolpgy and Biochemistry,2022,86(9):1183-1191.DOI:10.1093/bbb/zbac113.
[9] GUO Hui,TIAN Tao,NAN Kejun,et al.P57: A multifunctional protein in cancer(review)[J].International Journal of Oncology,2010,36(6):1321-1329.DOI:10.3892/ijo_00000617.
[10] WANG Ruina,XIAO Lei,PAN Jianbo,et al.Natural product P57 induces hypothermia through targeting pyridoxal kinase[J].Nature Communications,2023,14(1):5984.DOI:10.1038/s41467-023-41435-y.
[11] ROSENBERG J,ISCHEBECK T,COMMICHAU F.Vitamin B6 metabolism in microbes and approaches for fermentative production[J].Biotechnology Advances,2017,35(1):31-40.DOI:10.1016/j.biotechadv.2016.11.004.
[12] TAZOE M,ICHIKAWA K,HOSHINO T.Flavin adenine dinucleotide-dependent 4-phospho-D-erythronate dehydrogenase is responsible for the 4-phosphohydroxy-L-threonine pathway in vitamin B6 biosynthesis in Sinorhizobium meliloti[J].Journal of Bacteriology,2006,188(13):4635-4645.DOI:10.1128/JB.01999-05.
[13] RICHTS B,ROSENBERG J,COMMICHAU F.A survey of pyridoxal 5’-phosphate-dependent proteins in the gram-positive model bacterium Bacillus subtilis[J].Frontiers in Molecular Biosciences,2019,6:32.DOI:10.3389/fmolb.2019.00032.
[14] FITZPATRICK T,AMRHEIN N,KAPPES B,et al.Two independent routes of de novo vitamin B6 biosynthesis: Not that different after all[J].Biochemical Journal,2007,407(1):1-13.DOI:10.1042/BJ20070765.
[15] COMMICHAU F,ALZINGER A,SANDE R,et al.Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine[J].Metabolic Engineering,2014,25:38-49.DOI:10.1016/j.ymben.2014.06.007.
[16] COMMICHAU F,ALZINGER A,SANDE R,et al.Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-L-threonine to pyridoxine[J].Metabolic Engineering,2015,29:196-207.DOI:10.1016/j.ymben.2015.03.007.
[17] 徐勇智,范卫东,党登峰,等.维生素B6的合成研究进展[J].广州化工,2012,40(12):50-51.DOI:10.3969/j.issn.1001-9677.2012.12.019.
[18] TAZOE M,ICHIKAWA K,HOSHINO T.Biosynthesis of vitamin B6 in Rhizobium: In vitro synthesis of pyridoxine from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine[J].Bioscience, Biotechnology and Biochemistry,2002,66(4):934-936.DOI:10.1271/bbb.66.934.
[19] HOSHINO T,ICHIKAWA K,TAZOE M.Recombinant microorganism for the production of vitamin B6: US2006/0228785 A1[P].2006-06-15[2024-01-01] .
[20] ACEVEDO-ROCHA C,GRONENBERG L,MACK M,et al.Microbial cell factories for the sustainable manufacturing of B vitamins[J].Current Opinion in Biotechnology,2019,56:18-29.DOI:10.1016/j.copbio.2018.07.006.
[21] KIM J,FLOOD J,KRISTOFICH M,et al.Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB[J].The Proceedings of the National Academy of Sciences,2019,116(48):24164-24173.DOI:10.1073/pnas.1915569116.
[22] KIM J,KERSHNER J,NOVIKOV Y,et al.Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5’-phosphate synthesis[J].Molecular Systems Biology,2010,6:436.DOI:10.1038/msb.2010.88.
[23] KIM J,COPLEY S.Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network[J].The Proceedings of the National Academy of Sciences,2012,109(42):E2856-E2864.DOI:10.1073/pnas.1208509109.
[24] ROSENBERG J,MULLER P,LENTES S,et al.ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis[J].Molecular Microbiology,2016,101(5):879-893.DOI:10.1111/mmi.13429.
[25] ROSENBERG J,YEAK K,COMMICHAU F.A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis[J].Environmental Microbiology,2018,20(1):156-168.DOI:10.1111/1462-2920.13950.
[26] RICHTS B,COMMICHAU F.Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis[J].Applied Microbiology and Biotechnology,2021,105(6):2297-2305.DOI:10.1007/s00253-021-11199-w.
[27] CHOI K,JANG W,YANG D,et al.Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering[J].Trends in Biotechnology,2019,37(8):817-837.DOI:10.1016/j.tibtech.2019.01.003.
[28] ZHAN Yangyang,XU Yong,ZHENG Pengling,et al.Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis[J].Applied Microbiology and Biotechnology,2020,104(1):391-403.DOI:10.1007/s00253-019-10230-5.
[29] 朱欣娜,戴住波,樊飞宇,等.微生物细胞工厂[J].科学通报,2023,68(13):1626-1636.
[30] 刘洋,牟庆璇,石雅南,等.微生物细胞工厂的代谢调控[J].生物工程学报,2021,37(5):1541-1563.DOI:10.13345/j.cjb.200688.
[31] LIU Jie,OU Ying,XU Jianzhong,et al.L-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum[J].Bioresource Technology,2023,387:129701.DOI:10.1016/j.biortech.2023.129701.
[32] QU Ge,BI Yuexin,LIU Beibei,et al.Unlocking the stereoselectivity and substrate acceptance of enzymes: Proline-induced loop engineering test[J].Angewandte Chemie International Edition,2022,61(1):e202110793.DOI:10.1002/anie.202110793.
[33] PRAVDA L,BERKA K,VAREKOVA R,et al.Anatomy of enzyme channels[J].BMC Bioinformatics,2014,15(1):379.DOI:10.1186/s12859-014-0379-x.
[34] XIAO Shifeng,PATSALO V,SHAN Bing,et al.Rational modification of protein stability by targeting surface sites leads to complicated results[J].The Proceedings of the National Academy of Sciences,2013,110(28):11337-11342.DOI:10.1073/pnas.1222245110.