[1]李丹妮,郑忠亮.维生素B6的合成代谢及其生产应用[J].华侨大学学报(自然科学版),2024,45(5):588-595.[doi:10.11830/ISSN.1000-5013.202401015]
 LI Danni,ZHENG Zhongliang.Synthesis Metabolism and Production Application of Vitamin B6[J].Journal of Huaqiao University(Natural Science),2024,45(5):588-595.[doi:10.11830/ISSN.1000-5013.202401015]
点击复制

维生素B6的合成代谢及其生产应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第5期
页码:
588-595
栏目:
出版日期:
2024-09-20

文章信息/Info

Title:
Synthesis Metabolism and Production Application of Vitamin B6
文章编号:
1000-5013(2024)05-0588-08
作者:
李丹妮 郑忠亮
武汉大学 生命科学学院, 湖北 武汉 430072
Author(s):
LI Danni ZHENG Zhongliang
College of Life Sciences, Wuhan University, Wuhan 430072, China
关键词:
维生素B6 系统代谢工程 偶然途径 酶催化
Keywords:
vitamin B6 system metabolic engineering serendipitous pathway enzyme catalysis
分类号:
Q56
DOI:
10.11830/ISSN.1000-5013.202401015
文献标志码:
A
摘要:
为了得到环保、便捷且效率更高的维生素B6代谢生产途径,综述了维生素B6作为重要的生物活性小分子在不同生物体中参与的天然合成代谢途径及目前研究发现的偶然代谢途径;同时,总结了利用生物酶法与代谢工程生产维生素B6的生物合成法。结果表明:通过生物合成维生素B6可以代替化学合成法,但未来仍需要研究者对代谢途径进行不断优化、筛选,以得到更高产量的维生素B6
Abstract:
In order to achieve an environmentally friendly, convenient, and more efficient metabolic production pathway for vitamin B6, the natural metabolic and serendipitous pathways of vitamin B6 as an important bioactive small molecule in various organisms are comprehensively reviewed. Additionally, the biosynthesis method of vitamin B6 production by enzyme and metabolic engineering techniques is summarized. The results indicate that biosynthesis can serve as an alternative method to chemical synthesis for producing vitamin B6. However, further research is needed to continuously optimize and screen the metabolic pathway to obtain higher yields of vitamin B6.

参考文献/References:

[1] LIU Linxia,LI Jinlong,GAI Yuanming,et al.Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli[J].Nature Communications,2023,14(1):5304.DOI:10.1038/s41467-023-40928-0.
[2] DU Yiling,RYAN K.Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products[J].Natural Product Reports,2019,36(3):430-457.DOI:10.1039/c8np00049b.
[3] LIANG Jing,HAN Qian,TAN Yang,et al.Current advances on structure-function relationships of pyridoxal 5’-phosphate-dependent enzymes[J].Frontiers in Molecular Biosciences,2019,6:4.DOI:10.3389/fmolb.2019.00004.
[4] DHERBASSY Q,MAYER R,MUCHOWSKA K,et al.Metal-pyridoxal cooperativity in nonenzymatic transamination[J].Journal of the American Chemical Society,2023,145(24):13357-13370.DOI:10.1021/jacs.3c03542.
[5] STACH K,STACH W,AUGOFF K.Vitamin B6 in health and disease[J].Nutrients,2021,13(9):3229.DOI:10.3390/nu13093229.
[6] WILSON M,PLECKO B,MILLS P,et al.Disorders affecting vitamin B6 metabolism[J].Journal of Inherited Metabolic Disease,2019,42(4):629-646.DOI:10.1002/jimd.12060.
[7] KUMRUNGSEE T,ZHANG Peipei,CHARTKUL M,et al.Potential role of vitamin B6 in ameliorating the severity of COVID-19 and its complications[J].Frontiers in Nutrition,2020,7:562051.DOI:10.3389/fnut.2020.562051.
[8] ITO T.Role of the conserved pyridoxal 5’-phosphate-binding protein YggS/PLPBP in vitamin B6 and amino acid homeostasis[J].Bioscience, Biotechnolpgy and Biochemistry,2022,86(9):1183-1191.DOI:10.1093/bbb/zbac113.
[9] GUO Hui,TIAN Tao,NAN Kejun,et al.P57: A multifunctional protein in cancer(review)[J].International Journal of Oncology,2010,36(6):1321-1329.DOI:10.3892/ijo_00000617.
[10] WANG Ruina,XIAO Lei,PAN Jianbo,et al.Natural product P57 induces hypothermia through targeting pyridoxal kinase[J].Nature Communications,2023,14(1):5984.DOI:10.1038/s41467-023-41435-y.
[11] ROSENBERG J,ISCHEBECK T,COMMICHAU F.Vitamin B6 metabolism in microbes and approaches for fermentative production[J].Biotechnology Advances,2017,35(1):31-40.DOI:10.1016/j.biotechadv.2016.11.004.
[12] TAZOE M,ICHIKAWA K,HOSHINO T.Flavin adenine dinucleotide-dependent 4-phospho-D-erythronate dehydrogenase is responsible for the 4-phosphohydroxy-L-threonine pathway in vitamin B6 biosynthesis in Sinorhizobium meliloti[J].Journal of Bacteriology,2006,188(13):4635-4645.DOI:10.1128/JB.01999-05.
[13] RICHTS B,ROSENBERG J,COMMICHAU F.A survey of pyridoxal 5’-phosphate-dependent proteins in the gram-positive model bacterium Bacillus subtilis[J].Frontiers in Molecular Biosciences,2019,6:32.DOI:10.3389/fmolb.2019.00032.
[14] FITZPATRICK T,AMRHEIN N,KAPPES B,et al.Two independent routes of de novo vitamin B6 biosynthesis: Not that different after all[J].Biochemical Journal,2007,407(1):1-13.DOI:10.1042/BJ20070765.
[15] COMMICHAU F,ALZINGER A,SANDE R,et al.Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine[J].Metabolic Engineering,2014,25:38-49.DOI:10.1016/j.ymben.2014.06.007.
[16] COMMICHAU F,ALZINGER A,SANDE R,et al.Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-L-threonine to pyridoxine[J].Metabolic Engineering,2015,29:196-207.DOI:10.1016/j.ymben.2015.03.007.
[17] 徐勇智,范卫东,党登峰,等.维生素B6的合成研究进展[J].广州化工,2012,40(12):50-51.DOI:10.3969/j.issn.1001-9677.2012.12.019.
[18] TAZOE M,ICHIKAWA K,HOSHINO T.Biosynthesis of vitamin B6 in Rhizobium: In vitro synthesis of pyridoxine from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine[J].Bioscience, Biotechnology and Biochemistry,2002,66(4):934-936.DOI:10.1271/bbb.66.934.
[19] HOSHINO T,ICHIKAWA K,TAZOE M.Recombinant microorganism for the production of vitamin B6: US2006/0228785 A1[P].2006-06-15[2024-01-01] .
[20] ACEVEDO-ROCHA C,GRONENBERG L,MACK M,et al.Microbial cell factories for the sustainable manufacturing of B vitamins[J].Current Opinion in Biotechnology,2019,56:18-29.DOI:10.1016/j.copbio.2018.07.006.
[21] KIM J,FLOOD J,KRISTOFICH M,et al.Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB[J].The Proceedings of the National Academy of Sciences,2019,116(48):24164-24173.DOI:10.1073/pnas.1915569116.
[22] KIM J,KERSHNER J,NOVIKOV Y,et al.Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5’-phosphate synthesis[J].Molecular Systems Biology,2010,6:436.DOI:10.1038/msb.2010.88.
[23] KIM J,COPLEY S.Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network[J].The Proceedings of the National Academy of Sciences,2012,109(42):E2856-E2864.DOI:10.1073/pnas.1208509109.
[24] ROSENBERG J,MULLER P,LENTES S,et al.ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis[J].Molecular Microbiology,2016,101(5):879-893.DOI:10.1111/mmi.13429.
[25] ROSENBERG J,YEAK K,COMMICHAU F.A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis[J].Environmental Microbiology,2018,20(1):156-168.DOI:10.1111/1462-2920.13950.
[26] RICHTS B,COMMICHAU F.Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis[J].Applied Microbiology and Biotechnology,2021,105(6):2297-2305.DOI:10.1007/s00253-021-11199-w.
[27] CHOI K,JANG W,YANG D,et al.Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering[J].Trends in Biotechnology,2019,37(8):817-837.DOI:10.1016/j.tibtech.2019.01.003.
[28] ZHAN Yangyang,XU Yong,ZHENG Pengling,et al.Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis[J].Applied Microbiology and Biotechnology,2020,104(1):391-403.DOI:10.1007/s00253-019-10230-5.
[29] 朱欣娜,戴住波,樊飞宇,等.微生物细胞工厂[J].科学通报,2023,68(13):1626-1636.
[30] 刘洋,牟庆璇,石雅南,等.微生物细胞工厂的代谢调控[J].生物工程学报,2021,37(5):1541-1563.DOI:10.13345/j.cjb.200688.
[31] LIU Jie,OU Ying,XU Jianzhong,et al.L-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum[J].Bioresource Technology,2023,387:129701.DOI:10.1016/j.biortech.2023.129701.
[32] QU Ge,BI Yuexin,LIU Beibei,et al.Unlocking the stereoselectivity and substrate acceptance of enzymes: Proline-induced loop engineering test[J].Angewandte Chemie International Edition,2022,61(1):e202110793.DOI:10.1002/anie.202110793.
[33] PRAVDA L,BERKA K,VAREKOVA R,et al.Anatomy of enzyme channels[J].BMC Bioinformatics,2014,15(1):379.DOI:10.1186/s12859-014-0379-x.
[34] XIAO Shifeng,PATSALO V,SHAN Bing,et al.Rational modification of protein stability by targeting surface sites leads to complicated results[J].The Proceedings of the National Academy of Sciences,2013,110(28):11337-11342.DOI:10.1073/pnas.1222245110.

备注/Memo

备注/Memo:
收稿日期: 2024-01-18
通信作者: 郑忠亮(1976-),男,副教授,博士,主要从事酶工程、应用生物化学的研究。E-mail:biochem@whu.edu.cn。
基金项目: 国家自然科学基金资助项目(30800190, 81372441)
更新日期/Last Update: 2024-09-20