[1]王文栋,王轶楠,饶海彬,等.纳米结构石墨相氮化碳用于CO2催化转化的研究进展[J].华侨大学学报(自然科学版),2024,45(5):575-587.[doi:10.11830/ISSN.1000-5013.202407028]
 WANG Wendong,WANG Yinan,RAO Haibin,et al.Progress of Nanostructured Graphitic Carbon Nitride for CO2 Catalytic Conversion[J].Journal of Huaqiao University(Natural Science),2024,45(5):575-587.[doi:10.11830/ISSN.1000-5013.202407028]
点击复制

纳米结构石墨相氮化碳用于CO2催化转化的研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第5期
页码:
575-587
栏目:
出版日期:
2024-09-20

文章信息/Info

Title:
Progress of Nanostructured Graphitic Carbon Nitride for CO2 Catalytic Conversion
文章编号:
1000-5013(2024)05-0575-13
作者:
王文栋 王轶楠 饶海彬 郭芳松 詹国武
华侨大学 先进碳转化技术研究院, 福建 厦门 362021
Author(s):
WANG Wendong WANG Yinan RAO Haibin GUO Fangsong ZHAN Guowu
Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
关键词:
石墨相氮化碳(g-C3N4) 二氧化碳还原反应(CO2RR) 催化性能 光催化 电催化 纳米结构
Keywords:
graphitic carbon nitride(g-C3N4) carbon dioxide reduction reaction(CO2RR) catalytic performance photocatalysis electrocatalysis nanostructure
分类号:
TB34;O643.36
DOI:
10.11830/ISSN.1000-5013.202407028
文献标志码:
A
摘要:
系统性地梳理了石墨相氮化碳(g-C3N4)在光/电催化二氧化碳还原反应(CO2RR)的最新研究进展,深入探讨了通过精细调控其局域电子结构、表面化学配位、电荷传输机制及光学特性等关键参数所实现的催化性能提升。具体策略涵盖了结构优化设计、缺陷工程引入、元素/分子掺杂策略以及异质结构构建等前沿技术,这些创新方法为g-C3N4催化剂的定制化设计提供了丰富的工具箱。最后,对面临的挑战和前景进行了简要的总结和展望,以期为进一步合理设计g-C3N4作为选择性高效的CO2RR催化剂。
Abstract:
This paper comprehensively reviews the state-of-the-art advancements in graphitic carbon nitride(g-C3N4)for electrocatalytic and photocatalytic carbon dioxide reduction reaction(CO2RR). The improvement of catalytic performance by fine-tuning the key parameters of their local electronic structures, surface chemical coordination, charge transport mechanisms, and optical properties was discussed in detail. Highlighted approaches encompass cutting-edge methodologies like structural optimization, defect engineering, elemental/molecular doping and heterostructure assembly, collectively offering a versatile arsenal for tailored design of g-C3N4 catalysts. The review culminates in a concise synopsis of existing challenges and future perspectives, aiming to guide the rational development of g-C3N4 as highly selective and efficient CO2RR catalysts.

参考文献/References:

[1] ONG W J,ZHENG Nanfeng,ANTONIETTI M.Advanced nanomaterials for energy conversion and storage: Current status and future opportunities[J].Nanoscale,2021,13(22):9904-9907.DOI:10.1039/d1nr90103f.
[2] ARESTA M,DIBENEDETTO A,ANGELINI A.Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels: Technological use of CO2[J].Chemical reviews,2014,114(3):1709-1742.DOI:10.1021/cr4002758.
[3] JACOBSON T A,KLER J S,HERNKE M T,et al.Direct human health risks of increased atmospheric carbon dioxide[J].Nature Sustainability,2019,2(8):691-701.DOI:10.1038/s41893-019-0323-1.
[4] BONIFACE K J,DYKEMAN R R,CORMIER A,et al.CO2-switchable drying agents[J].Green Chemistry,2016,18(1):208-213.DOI:10.1039/c5gc01201e.
[5] MODAK A,BHANJA P,DUTTA S,et al.Catalytic reduction of CO2 into fuels and fine chemicals[J].Green Chemistry,2020,22(13):4002-4033.DOI:10.1039/d0gc01092h.
[6] SHAUGHNESSY C I,SCONYERS D J,LEE H J,et al.Insights into pressure tunable reaction rates for electrochemical reduction of CO2 in organic electrolytes[J].Green chemistry,2020,22(8):2434-2442.DOI:10.1039/d0gc00013b.
[7] FRANCO F,RETTENMAIER C,JEON H S,et al.Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials[J].Chemical Society Reviews,2020,49(19):6884-6946.DOI:10.1039/d0cs00835d.
[8] NIU Wenhan,LI Zhao,MARCUS K,et al.Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-Air batteries[J].Advanced Energy Materials,2018,8(1):1701642(1-8).DOI:10.1002/aenm.201701642.
[9] WU Yunzhen,CAO Shuyan,HOU Jungang,et al.Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction[J].Advanced Energy Materials,2020,10(29):2000588(1-31).DOI:10.1002/aenm.202000588.
[10] SONG Qingwen,ZHOU Zhihua,HE Liangnian.Efficient,selective and sustainable catalysis of carbon dioxide[J].Green Chemistry,2017,19(16):3707-3728.DOI:10.1039/c7gc00199a.
[11] ZHANG Deliang,HE Wen,YE Jiamin,et al.Polymeric carbon nitride-derived photocatalysts for water splitting and nitrogen fixation[J].Small,2021,17(13):2005149(1-28).DOI:10.1002/smll.202005149.
[12] XIA Pengfei,CHENG Bei,JIANG Jizhou,et al.Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst[J].Applied Surface Science,2019,487:335-342.DOI:10.1016/j.apsusc.2019.05.064.
[13] WANG Huimin,LI Xingxing,YANG Jinlong.The g-C3N4/C2N nanocomposite: A g-C3N4-based water-splitting photocatalyst with enhanced energy efficiency[J].Chem Phys Chem,2016,17(13):2100-2104.DOI:10.1002/cphc.201600209.
[14] ONG W J,PUTRI L K,MOHAMED A R.Rational design of carbon-based 2D nanostructures for enhanced photocatalytic CO2 reduction: A dimensionality perspective[J].Chemistry: A European Journal,2020,26(44):9710-9748.DOI:10.1002/chem.202000708.
[15] ZHANG Shouren,YI Wenjing,GUO Yanzhen,et al.Metal-free g-C3N4 nanosheets as a highly visible-light-active photocatalyst for thiol-ene reactions[J].Nanoscale,2021,13(6):3493-3499.DOI:10.1039/d1nr00453k.
[16] WANG Fengliang,CHEN Ping,FENG Yiping,et al.Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J].Applied Catalysis B: Environmental,2017,207:103-113.DOI:10.1016/j.apcatb.2017.02.024.
[17] INTERNATIONAL ENERGY AGENCY.CO2 emissions in 2023[R/OL].(2024-03-01)[2024-07-16] .https://www.iea.org/reports/co2-emissions-in-2023.
[18] ZHANG Yu,GAO Yanshan,LOUIS B,et al.Fabrication of lithium silicates from zeolite for CO2 capture at high temperatures[J].Journal of Energy Chemistry,2019,33(6):81-89.DOI:10.1016/j.jechem.2018.08.014.
[19] HELDEBRANT D J,YONKER C R,JESSOP P G,et al.Organic liquid CO2 capture agents with high gravimetric CO2 capacity[J].Energy & Environmental Science,2008,1(4):487-493.DOI:10.1039/B809533G.
[20] NAKATA K,OZAKI T,TERASHIMA C,et al.High-yield electrochemical production of formaldehyde from CO2 and seawater[J].Angewandte Chemie International Edition,2014,53(3):871-874.DOI:10.1002/ange.201308657.
[21] KORTLEVER R,PETERS I,KOPER S,et al.Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles[J].Acs Catalysis,2015,5(7):3916-3923.DOI:10.1021/acscatal.5b00602.
[22] KOVACIC Z,LIKOZAR B,HUS M.Photocatalytic CO2 reduction: A review of ab initio mechanism,kinetics,and multiscale modeling simulations[J].ACS catalysis,2020,10(24):14984-15007.DOI:10.1021/acscatal.0c02557.
[23] KONG Tingting,JIANG Yawen,XIONG Yujie.Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation?[J].Chemical Society Reviews,2020,49(18):6579-6591.DOI:10.1039/c9cs00920e.
[24] WANG Liming,CHEN Wenlong,ZHANG Doudou,et al.Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms[J].Chemical Society Reviews,2019,48(21):5310-5349.DOI:10.1039/c9cs00163h.
[25] 李晨露,王亚男,徐松,et al.MoO(3-x)负载蜂窝状氮化碳的制备及其光热协同催化CO2还原性能研究[J].化学反应工程与工艺,2024,40(1):10-18.DOI:10.11730/j.issn.1001-7631.2024.01.0010.09.
[26] 徐杨,刘成宝,郑磊之,et al.高结晶度g-C3N4在光催化领域的研究进展[J/OL].材料导报,2023:1-20(2023-11-13)[2024-07-16] .http://kns.cnki.net/kcms/detail/50.1078.tb.20231110.1017.006.html.
[27] 孙满营.硼、磷修饰促进g-C3N4光催化CO2还原的研究[D].南宁:广西大学,2023.DOI:10.27034/d.cnki.ggxiu.2023.003069.
[28] MILLER T S,JORGE A B,SUTER T M,et al.Carbon nitrides: Synthesis and characterization of a new class of functional materials[J].Physical Chemistry Chemical Physics,2017,19(24):15613-15638.DOI:10.1039/c7cp02711g.
[29] ZHU Yuxiang,FENG Yi,CHEN Shuangling,et al.Carbon nitride nanotube-based materials for energy and environmental applications: A review of recent progresses[J].Journal of Materials Chemistry A:Materials for Energy and Sustainability,2020,8(48):25626-25648.DOI:10.1039/d0ta08892g.
[30] SUN Zhuxing,WANG Haiqiang,WU Zhongbiao,et al.g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J].Catalysis Today,2018,300:160-172.DOI:10.1016/j.cattod.2017.05.033.
[31] MA Huiqiang,LI Yang,LI Shuang,et al.Novel PO codoped g-C3N4 with large specific surface area: Hydrothermal synthesis assisted by dissolution-precipitation process and their visible light activity under anoxic conditions[J].Applied Surface Science,2015,357:131-138.DOI:10.1016/j.apsusc.2015.09.009.
[32] 唐浩宇,刘成宝,陈丰,et al.模板法合成g-C3N4基复合材料及其光催化性能的研究进展[J].功能材料,2024,55(4):4062-4071.DOI:10.3969/j.issn.1001-9731.2024.04.008.
[33] 张子琪,孙彦东,张雪,et al.非金属掺杂的g-C3N4光催化材料制备及应用研究进展[J].材料工程,2023,51(12):47-58.DOI:10.11868/j.issn.1001-4381.2023.000293.
[34] XIA Pengfei,ZHU Bicheng,YU Jiaguo,et al.Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction[J].Journal of Materials Chemistry A,2017,5(7):3230-3238.DOI:10.1039/C6TA08310B.
[35] WANG Ke,FU Jile,ZHENG Ying.Insights into photocatalytic CO2 reduction on C3N4: Strategy of simultaneous B,K co-doping and enhancement by N vacancies[J].Applied Catalysis B: Environmental,2019,254:270-282.DOI:10.1016/j.apcatb.2019.05.002.
[36] ZHANG Shumin,XU Difa,CHEN Xiaohua,et al.Construction of ultrathin 2D/2D g-C3N4/In2Se3 heterojunctions with high-speed charge transfer nanochannels for promoting photocatalytic hydrogen production[J].Applied Surface Science,2020,528:146858(1-9).DOI:10.1016/j.apsusc.2020.146858.
[37] LU Zhiyuan,LI Chunmei,HAN Juan,et al.Construction OD/2D heterojunction by highly dispersed Ni2P QDs loaded on the ultrathin g-C3N4 surface towards superhigh photocatalytic and photoelectric performance[J].Applied Catalysis B: Environmental,2018,237:919-926.DOI:10.1016/j.apcatb.2018.06.062.
[38] NIU Ping,YANG Yongqiang,YU J C,et al.Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst[J].Chemical Communications,2014,50(74):10837-10840.DOI:10.1039/c4cc03060e.
[39] LI Hong,WANG Lingzhi,LIU Yongdi,et al.Mesoporous graphitic carbon nitride materials: Synthesis and modifications[J].Research on Chemical Intermediates,2016,42:3979-3998.DOI:10.1007/s11164-015-2294-9.
[40] FUKASAWA Y,TAKANABE K,SHIMOJIMA A,et al.Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template[J].Chemistry: An Asian Journal,2011,6(1):103-109.DOI:10.1002/asia.201000523.
[41] SUN Zhimin,FANG Wei,ZHAO Lei,et al.3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction[J].Applied Surface Science,2020,504:144347(1-10).DOI:10.1016/j.apsusc.2019.144347.
[42] LIN Lihua,YU Zhiyang,WANG Xinchen.Crystalline carbon nitride semiconductors for photocatalytic water splitting[J].Angewandte Chemie,2019,131(19):6225-6236.DOI:10.1002/anie.201809897.
[43] LI Han,ZHU Bicheng,CAO Shaowen,et al.Controlling defects in crystalline carbon nitride to optimize photocatalytic CO2 reduction[J].Chemical Communications,2020,56(42):5641-5644.DOI:10.1039/d0cc01338b.
[44] LI Yupei,HE Jiangyan,WANG Xiaojing,et al.Introduction of crystalline hexagonal-C3N4 into g-C3N4 with enhanced charge separation efficiency[J].Applied Surface Science,2021,559:149876(1-10).DOI:10.1016/j.apsusc.2021.149876.
[45] ZHANG Xiao,HE Shuai,JIANG Sanping.WOx/g-C3N4 layered heterostructures with controlled crystallinity towards superior photocatalytic degradation and H2 generation[J].Carbon,2020,156:488-498.DOI:10.1016/j.carbon.2019.09.083.
[46] BAI Xiaojuan,JIA Tianqi,WANG Xuyu,et al.High carrier separation efficiency for a defective g-C3N4 with polarization effect and defect engineering: Mechanism, properties and prospects[J].Catalysis Science & Technology,2021,11(16):5432-5447.DOI:10.1039/D1CY00595B.
[47] CAO Shihai,FAN Bin,FENG Yanchao,et al.Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation[J].Chemical Engineering Journal,2018,353:147-156.DOI:10.1016/j.cej.2018.07.116.
[48] TU Wenguang,XU You,WANG Jiajia,et al.Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction[J].ACS Sustainable Chemistry & Engineering,2017,5(8):7260-7268.DOI:10.1021/acssuschemeng.7b01477.
[49] LIAO Jiazhen,CUI Wen,LI Jieyuan,et al.Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4[J].Chemical Engineering Journal,2020,379:122282(1-8).DOI:10.1016/j.cej.2019.122282.
[50] WANG Mier,FAN Changzheng,YANG Shuaijun,et al.Nitrogen deficient carbon nitride for efficient visible light driven tetracycline degradation: A combination of experimental and DFT studies[J].Catalysis Science & Technology,2020,10(20):6800-6808.DOI:10.1039/d0cy01124j.
[51] YANG Chengwu,XUE Zhe,QIN Jiaqian,et al.Heterogeneous structural defects to prompt charge shuttle in g-C3N4 plane for boosting visible-light photocatalytic activity[J].Applied Catalysis B: Environmental,2019,259:118094(1-8).DOI:10.1016/j.apcatb.2019.118094.
[52] XIONG Jun,DI Jun,XIA Jiexiang,et al.Surface defect engineering in 2D nanomaterials for photocatalysis[J].Advanced Functional Materials,2018,28(39):1801983(1-19).DOI:10.1002/adfm.201801983.
[53] YU Guiyan,ZHAO Haitao,XING Chuanwang,et al.Creation of carbon defects and in-plane holes with the assistance of NH4Br to enhance the photocatalytic activity of g-C3N4[J].Catalysis Science & Technology,2021,11(15):5349-5359.DOI:10.1039/d1cy00641j.
[54] CHEN Xingzhu,ZHAO Xiujian,KONG Zhouzhou,et al.Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride[J].Journal of Materials Chemistry A,2018,6(44):21941-21948.DOI:10.1039/C8TA06497K.
[55] LIU Guimei,HUANG Ying,Lü Haiqin,et al.Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion[J].Applied Catalysis B: Environmental,2021,284:119683(1-12).DOI:10.1016/j.apcatb.2020.119683.
[56] NG S F,LAU M Y L,ONG W J.Engineering layered double hydroxide-based photocatalysts toward artificial photosynthesis: State-of-the-art progress and prospects[J].Solar Rrl,2021,5(6):2000535.DOI:10.1002/solr.202000535.
[57] HU Chechia,HUNG Weizeng,WANG Maosheng,et al.Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst[J].Carbon,2018,127:374-383.DOI:10.1016/j.carbon.2017.11.019.
[58] MAHVELATI-SHAMSABADI T,LEE B K.Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: Electronic, optical, and surface properties[J].Renewable and Sustainable Energy Reviews,2020,130:109957(1-19).DOI:10.1016/j.rser.2020.109957.
[59] LIU Yonggang,LIU Peitao,SUN Changqi,et al.P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations[J].Applied Physics Letters,2017,110(22):222403(1-5).DOI:10.1063/1.4984584.
[60] FU Sijia,LIU Xin,RAN Jingrun,et al.CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites[J].Applied Surface Science,2021,540:148293(1-7).DOI:10.1016/j.apsusc.2020.148293.
[61] WANG Shuhui,ZHAN Jiawei,CHEN Kui,et al.Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction[J].ACS Sustainable Chemistry & Engineering,2020,8(22):8214-8222.DOI:10.1021/acssuschemeng.0c01151.
[62] MA X,LV Y,XU J,et al.A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study[J].The Journal of Physical Chemistry C,2012,116(44):23485-93.
[63] WANG Yi,TANG Xu,HUO Pengwei,et al.Insight into the effect of the Cl 3p orbital on g-C3N4 mimicking photosynthesis under CO2 reduction[J].The Journal of Physical Chemistry C,2021,125(18):9646-9456.DOI:10.1021/acs.jpcc.1c00663.
[64] WEI Bo,MEI Qiong,AN Zexiu,et al.Nonmetal-doped C2N nanosheets for removal of methoxyphenols: A first-principles study[J].ACS Applied Nano Materials,2020,4(1):478-486.DOI:10.1021/acsanm.0c02787.
[65] TANG Hua,XIA Zhihua,CHEN Ran,et al.Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution[J].Chemistry: An Asian Journal,2020,15(21):3456-3461.DOI:10.1002/asia.202000912.
[66] FU Junwei,WANG Shuandi,WANG Zihua,et al.Graphitic carbon nitride based single-atom photocatalysts[J].Frontiers of Physics,2020,15(3):33201(1-14).DOI:10.1007/s11467-019-0950-z.
[67] LI Yanrui,KONG Tingting,SHEN Shaohua.Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles,single atoms,and molecular complexes[J].Small,2019,15(32):1900772(1-18).DOI:10.1002/smll.201900772.
[68] FU Junwei,YU Jiaguo,JIANG Chuanjia,et al.g-C3N4-Based heterostructured photocatalysts[J].Advanced Energy Materials,2018,8(3):1701503(1-31).DOI:10.1002/aenm.201701503.
[69] LU Qingqing,EID K,LI Wenpeng,et al.Engineering graphitic carbon nitride(g-C3N4)for catalytic reduction of CO2 to fuels and chemicals: Strategy and mechanism[J].Green Chemistry,2021,23(15):5394-5428.DOI:10.1039/d1gc01303c.
[70] NG S F,FOO J J,ONG W J.Solar-powered chemistry: Engineering low-dimensional carbon nitride-based nanostructures for selective CO2 conversion to C1-C2 products[J].Info Mat,2022,4(1):e12279.DOI:10.1002/inf2.12279.
[71] SHI Qunrong,HUANG Junjie,YANG Yong,et al.In-situ construction of urchin-like hierarchical g-C3N4/NiAl-LDH hybrid for efficient photoreduction of CO2[J].Materials Letters,2020,268:127560(1-5).DOI:10.1016/j.matlet.2020.127560.
[72] 刘雪美,罗绣毓,王华.BiOBr/CN 2D/2D异质结高效光催化CO2还原[J/OL].化学工业与工程,2024:1-13(2024-07-19)[2024-07-16] .https://doi.org/10.13353/j.issn.1004.9533.20230175.
[73] MATHEW M,SHINDE P V,SAMAL R,et al.A review on mechanisms and recent developments in pn heterojunctions of 2D materials for gas sensing applications[J].Journal of Materials Science,2021,56(16):9575-9604.DOI:10.1007/s10853-021-05884-4。
[74] WANG Yajun,WANG Qisheng,ZHAN Xueying,et al.Visible light driven type Ⅱ heterostructures and their enhanced photocatalysis properties: A review[J].Nanoscale,2013,5(18):8326-8339.DOI:10.1039/c3nr01577g.
[75] Lü Pan,DUAN Fang,SHENG Jialiang,et al.The 2D/2D p-n heterojunction of ZnCoMOF/g-C3N4 with enhanced photocatalytic hydrogen evolution under visible light irradiation[J].Applied Organometallic Chemistry,2021,35(3):e6124.
[76] LI Haijin,TU Wenguang,ZHOU Yong,et al.Z-scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges[J].Advanced science,2016,3(11):1500389.DOI:10.1002/advs.201500389.
[77] ZHANG Wenhao,MOHAMED A R,ONG W J.Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now?[J].Angewandte Chemie International Edition,2020,59(51):22894-22915.DOI:10.1002/anie.201914925.
[78] LU Mengfei,LI Qiaoqiao,ZHANG Chengliang,et al.Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer[J].Carbon,2020,160:342-352.DOI:10.1016/j.carbon.2020.01.038.
[79] FEI Xingan,ZHANG Liuyang,YU Jiaguo,et al.DFT study on regulating the electronic structure and CO2 reduction reaction in BiOBr/sulphur-doped g-C3N4 S-scheme heterojunctions[J].Frontiers in Nanotechnology,2021,3:698351.DOI:10.3389/fnano.2021.698351.
[80] YANG Chao,ZHANG Qinghe,WANG Wang,et al.2D/2D g-C3N4@BiOI S-scheme heterojunction with gas-liquid-solid triphase interface for highly efficient CO2 photoreduction[J].Science China Materials,2024,67(6):1830-1838.DOI:10.1007/s40843-024-2789-0.

备注/Memo

备注/Memo:
收稿日期: 2024-07-16
通信作者: 郭芳松(1989-),男,副研究员,博士,主要从事集成催化剂材料等方面的研究。E-mail:fsguo@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(U21A20324, 22278167, 22322806); 华侨大学科研启动项目(22BS138)
更新日期/Last Update: 2024-09-20