参考文献/References:
[1] DING Kai,NIU Zhangqi,HUI Jizhuang,et al.A weld surface defect recognition method based on improved MobileNetV2 algorithm[J].Mathematics,2022,10(19):3678.DOI:10.3390/math10193678.
[2] XU Hao,YAN Zhihong,JI Bowen,et al.Defect detection in welding radiographic images based on semantic segmentation methods[J].Measurement,2022,188:110569.DOI:10.1016/j.measurement.2021.110569.
[3] SAY D,ZIDI S,QAISAR S M,et al.Automated categorization of multiclass welding defects using the X-ray image augmentation and convolutional neural network[J].Sensors,2023,23(14):6422.DOI:10.3390/s23146422.
[4] KUMARESAN S,AULTRIN K S J,KUMAR S S,et al.Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning[J].International Journal on Interactive Design and Manufacturing,2023,17(6):2999-3010.DOI:10.1007/s12008-023-01327-3.
[5] TOTINO B,SPAGNOLO F,PERRI S.RIAWELC: A novel dataset of radiographic images for automatic weld defects classification[J].International Journal of Electrical and Computer Engineering Research,2023,3(1):13-17.DOI:10.53375/ijecer.2023.320.
[6] 张智慧,林耀进,张小清,等.基于类别一致性的层次特征选择算法[J].闽南师范大学学报(自然科学版),2022,35(4):41-49.DOI:10.16007/j.cnki.issn2095-7122.2022.04.007.
[7] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[C]//International Conference on Learning Representations.Banff:[s.n.],2014:1-14.DOI:10.48550/arXiv.1312.6203.
[8] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations.Toulon:[s.n.],2017:1-14.DOI:10.48550/arXiv.1609.02907.
[9] WANG Yucheng,GAO Liang,GAO Yiping,et al.A graph guided convolutional neural network for surface defect recognition[J].IEEE Transactions on Automation Science and Engineering,2022,19(3):1392-1404.DOI:10.1109/tase.2022.3140784.
[10] BALCIOGLU Y S,SEZEN B,?ERASI C C,et al.Machine design automation model for metal production defect recognition with deep graph convolutional neural network[J].Electronics,2023,12(4):825.DOI:10.3390/electronics12040825.
[11] 周忠眉,孟威.多角度标签结构和特征融合的多标签特征选择[J].闽南师范大学学报(自然科学版),2021,34(1):64-71.DOI:10.16007/j.cnki.issn2095-7122.2021.01.011.
[12] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:770-778.DOI:10.1109/cvpr.2016.90.
[13] GAO Shanghua,CHENG Mingming,ZHAO Kai,et al.Res2Net: A new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662.DOI:10.1109/TPAMI.2019.2938758.
[14] HAJEBI K,ABBASI-YADKORI Y,SHAHBAZI H,et al.Fast approximate nearest-neighbor search with k-nearest neighbor graph[C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.Barcelona:AAAI Press,2011:1312-1317.DOI:10.5591/978-1-57735-516-8/IJCAI11-222.
[15] CHEEMA M A,LIN Xuemin,ZHANG Wenjie,et al.Influence zone: Efficiently processing reverse k nearest neighbors queries[C]//IEEE 27th International Conference on Data Engineering.Washington D C:IEEE Press,2011:577-588.DOI:10.1109/ICDE.2011.5767904.
[16] LIU Yongli,ZHAO Congcong,CHAO Hao.Density peak clustering based on relative density under progressive allocation strategy[J].Mathematical and Computational Applications,2022,27(5):84.DOI:10.3390/mca27050084.
[17] MERY D,RIFFO V,ZSCHERPEL U,et al.GDXray: The database of X-ray images for nondestructive testing[J].Journal of Nondestructive Evaluation,2015,34(4):42.DOI:10.1007/s10921-015-0315-7.
[18] 全国锅炉压力容器标准化技术委员会.承压设备无损检测: NB/T 47013.1-2015[S].北京:新华出版社,2015.
[19] IANDOLA F N,HAN Song,MOSKEWICZ M W,et al.SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]//International Conference on Learning Representations.Toulon:[s.n.],2017:1-13.DOI:10.48550/arXiv.1602.07360.
[20] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2024-02-10] .https://doi.org/10.48550/arXiv.1409.1556.
[21] LI Jiafeng,WEN Ying,HE Lianghua.SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE Press,2023:6153-6162.DOI:10.1109/cvpr52729.2023.00596.
[22] CAI Zhicheng,DING Xiaohan,SHEN Qiu,et al.Refconv: Re-parameterized refocusing convolution for powerful convnets[C]//International Conference on Learning Representations.Vienna:[s.n.],2024:1-17.DOI:10.48550/arXiv.2310.10563.
[23] HUANG Xun,BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice:IEEE Press,2017:1501-1510.DOI:10.1109/iccv.2017.167.
[24] CHEN Zhaoming,WEI Xiushen,WANG Peng,et al.Multi-label image recognition with graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:5177-5186.DOI:10.1109/cvpr.2019.00532.
[25] WANG Yangtao,XIE Yanzhao,LIU Yu,et al.Fast graph convolution network based multi-label image recognition via cross-modal fusion[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:1575-1584.DOI:10.1145/3340531.3411880.
[26] LI Yaning,YANG Liu.More correlations better performance: Fully associative networks for multi-label image classification[C]//25th International Conference on Pattern Recognition.Milan:IEEE Press,2021:9437-9444.DOI:10.1109/icpr48806.2021.9412004.
[27] WANG Yangtao,XIE Yanzhao,ZENG Jiangfeng,et al.Cross-modal fusion for multi-label image classification with attention mechanism[J].Computers and Electrical Engineering,2022,101:108002.DOI:10.1016/j.compeleceng.2022.108002.
[28] PANG Wenkai,TAN Zhi.A steel surface defect detection model based on graph neural networks[J].Measurement Science and Technology,2024,35(4):046201.DOI:10.1088/1361-6501/ad1c4b.