[1]王慧,明德松,王明席.Comamonas kerstersii细菌致病性的基因组分析(英文)[J].华侨大学学报(自然科学版),2024,45(3):394-416.[doi:10.11830/ISSN.1000-5013.202311001]
 WANG Hui,MING Desong,WANG Mingxi.Genomic Insights of Pathogenicity of Comamonas kerstersii[J].Journal of Huaqiao University(Natural Science),2024,45(3):394-416.[doi:10.11830/ISSN.1000-5013.202311001]
点击复制

Comamonas kerstersii细菌致病性的基因组分析(英文)()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第3期
页码:
394-416
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Genomic Insights of Pathogenicity of Comamonas kerstersii
文章编号:
1000-5013(2024)03-0394-23
作者:
王慧1 明德松2 王明席1
1. 华侨大学 医学院, 福建 厦门 361021;2. 福建医科大学附属泉州第一医院, 福建 泉州 362000
Author(s):
WANG Hui1 MING Desong2 WANG Mingxi1
1. School of Medicine, Huaqiao University, Xiamen 361021, China; 2. Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
关键词:
Comamonas kerstersii 毒力因子基因 致病性 细胞内病原体 胃肠道感染 肺部感染
Keywords:
Comamonas kerstersii virulence factor gene pathogenicity intracellular pathogen gastrointestinal tract infection lung infection
分类号:
Q939.48;R378
DOI:
10.11830/ISSN.1000-5013.202311001
文献标志码:
A
摘要:
为了更好地管理Comamonas kerstersii(C. kerstersii)感染,通过分析C. kerstersii菌株121606基因组中的毒力因子基因(VFGs)来了解其毒力和致病性。 对已经完成测序的C. kerstersii 121606基因组,通过BLAST搜索VFDB数据库来预测其VFGs。结果表明:C. kerstersii含有大量VFGs,其中一些与其在人体内的生存和生长,以及在胃肠道和肺部的致病性有关。基因组分析表明:C. kerstersii可能是一种细胞内病原体。C. kerstersii所携带的VFGs有助于解释其在文献中所报道的胃肠道感染和临床工作中所遇到的肺部感染中的毒力和致病性,这些数据也为新型抗生素和疫苗开发提供了理想的靶点,以用于治疗C. kerstersii感染。
Abstract:
To achieve better management of Comamonas kerstersii(C. kerstersii)infections,the aim was to understand its virulence and pathogenicity by analyzing the virulence factor genes(VFGs)in the genome of C. kerstersii 121606. The genome was sequenced previously, and the VFGs were predicted by BLAST searching through the VFDB database. The results showed that C. kerstersii contained a large number of VFGs, some of which were exemplified to correlate to the survival and growth in humans, and the pathogenicity of C. kerstersii in the gastrointestinal tract and lungs. Genomic analysis revealed that C. kerstersii might be an intracellular pathogen. The harbored VFGs were conducive to explaining its virulence and pathogenicity in gastrointestinal tract and lung infections reported in the literature or encountered in clinic. The data also provided ideal targets for novel antibiotic and vaccine development for the therapy of C. kerstersii infections.

参考文献/References:

[1] WAUTERS G,DE BAERE T,WILLEMS A,et al.Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena[J].Int J Syst Evol Microbiol,2003,53(3):859-62.DOI:10.1099/ijs.0.02450-0.
[2] CHEN Lihong,XIONG Zhaohui,SUN Lilian,et al.VFDB 2012 update:toward the genetic diversity and molecular evolution of bacterial virulence factors[J].Nucleic Acids Res,2012,40(D1):D641-D645.DOI:10.1093/nar/gkr989.
[3] MILLER M C,PARKIN S,FETHERSTON J D,et al.Crystal structure of ferric-yersiniabactin,a virulence factor of Yersinia pestis[J].J Inorg Biochem,2006,100(9):1495-500.DOI:10.1016/j.jinorgbio.2006.04.007.
[4] FETHERSTON J D,KIRILLINA O,BOBROV A G,et al.The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague[J].Infect Immun,2010,78(5):2045-2052.DOI:10.1128/IAI.01236-09.
[5] CHAO A,SIEMINSKI P J,OWENS C P,et al.Iron acquisition in Mycobacterium tuberculosis[J].Chem Rev,2019,119(2):1193-1220.DOI:10.1021/acs.chemrev.8b00285.
[6] BUTT A T,THOMAS M S.Iron acquisition mechanisms and their role in the virulence of Burkholderia species[J].Front Cell Infect Microbiol,2017,7:460(1-21).DOI:10.3389/fcimb.2017.00460.
[7] KOCZURA R,KAZNOWSKI A.The Yersinia high-pathogenicity island and iron-uptake systems in clinical isolates of Escherichia coli[J].J Med Microbiol,2003,52(8):637-642.DOI:10.1099/jmm.0.05219-0.
[8] PERRY R D,BALBO P B,JONES H A,et al.Yersiniabactin from Yersinia pestis: Biochemical characterization of the siderophore and its role in iron transport and regulation[J],Microbiology(Reading),1999,145(5):1181-1190.DOI:10.1099/13500872-145-5-1181.
[9] HAAG H,HANTKE K,DRECHSEL H,et al.Purification of yersiniabactin: A siderophore and possible virulence factor of Yersinia enterocolitica[J].J Gen Microbiol,1993,139(9):2159-2165.DOI:10.1099/00221287-139-9-2159.
[10] SCHUBERT S,PICARD B,GOURIOU S,et al.Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections[J].Infect Immun,2002,70(9):5335-5337.DOI:10.1128/IAI.70.9.5335-5337.2002.
[11] SEBBANE F,JARRETT C,GARDNER D,et al.Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague[J].PLoS One,2010,5(12):e14379.DOI:10.1371/journal.pone.0014379.
[12] PERRY R D,BOBROV A G,FETHERSTON J D.The role of transition metal transporters for iron,zinc,manganese,and copper in the pathogenesis of Yersinia pestis[J].Metallomics,2015,7(6):965-978.DOI:10.1039/c4mt00332b.
[13] CARNIEL E.The Yersinia high-pathogenicity island[J].Int Microbiol,1999,2(3):161-167.
[14] KOH E I,HUNG C S,HENDERSON J P.The yersiniabactin-associated ATP binding cassette proteins YbtP and YbtQ enhance Escherichia coli fitness during high-titer cystitis[J].Infect Immun,2016,84(5):1312-1319.DOI:10.1128/IAI.01211-15.
[15] FETHERSTON J D,BERTOLINO V J,PERRY R D.YbtP and YbtQ: Two ABC transporters required for iron uptake in Yersinia pestis[J].Mol Microbiol,1999,32(2):289-299.DOI:10.1046/j.1365-2958.1999.01348.x.
[16] BOBROV A G,KIRILLINA O,FETHERSTON J D,et al.The Yersinia pestis siderophore,yersiniabactin,and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice[J].Mol Microbiol,2014,93(4):759-775.DOI:10.1111/mmi.12693.
[17] ADHIKARI P,KIRBY S D,NOWALK A J,et al.Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon[J].J Biol Chem,1995,270(42):25142-25149.DOI:10.1074/jbc.270.42.25142.
[18] FERREIRóS C,CRIADO M T,GóMEZ J A.The neisserial 37 kDa ferric binding protein(FbpA)[J].Comp Biochem Physiol B Biochem Mol Biol,1999,123(1):1-7.DOI:10.1016/s0305-0491(99)00044-9.
[19] LAU G H,MACGILLIVRAY R T,MURPHY M E.Characterization of a nucleotide-binding domain associated with neisserial iron transport[J].J Bacteriol,2004,186(10):3266-3269.DOI:10.1128/JB.186.10.3266-3269.2004.
[20] GOLDBERG M B,BOYKO S A,CALDERWOOD S B.Positive transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae[J].Proc Natl Acad Sci USA,1991,88(4):1125-1129.DOI:10.1073/pnas.88.4.1125.
[21] PI Hualiang,HELMANN J D.Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis[J].Proc Natl Acad Sci USA,2017,114(48):12785-12790.DOI:10.1073/pnas.1713008114.
[22] WILLEMSEN P T,VULTO I,BOXEM M,et al.Characterization of a periplasmic protein involved in iron utilization of Actinobacillus actinomycetemcomitans[J].J Bacteriol,1997,179(15):4949-4952.DOI:10.1128/jb.179.15.4949-4952.1997.
[23] GENTA R M. Helicobacter pylori,mucosal damage,and apoptosis:pathogenesis and definition of gastric atrophy[J].Gastroenterology,1997,113(Suppl l):S51-S55.DOI:10.1016/s0016-5085(97)80012-1.
[24] SENKOVICH O,CEASER S,MCGEE D J,et al.Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media[J].Infect Immun,2010,78(5):1841-1849.DOI:10.1128/IAI.01258-09.
[25] HAYER-HARTL M,BRACHER A,HARTL F U.The GroEL-GroES Chaperonin machine: A nano-cage for protein folding[J].Trends Biochem Sci,2016,41(1):62-76.DOI:10.1016/j.tibs.2015.07.009.
[26] DUNN B E,PHADNIS S H.Structure, function and localization of Helicobacter pyloriurease[J]. Yale J Biol Med,1998,71(2):63-73.
[27] GONZáLEZ-LóPEZ M A,VELáZQUEZ-GUADARRAMA N,REMERO-ESPEJEL M E,et al.Helicobacter pylori secretes the chaperonin GroEL(HSP60),which binds iron[J].FEBS Lett,2013,587(12):1823-1828.DOI:10.1016/j.febslet.2013.04.048.
[28] RIBBE M W,BURGESS B K.The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase[J].Proc Natl Acad Sci USA,2001,98(10):5521-5525.DOI:10.1073/pnas.101119498.
[29] HARTL F U,BRACHER A,HAYER-HARTL M.Molecular chaperones in protein folding and proteostasis[J].Nature,2011,475(7356):324-332.DOI:10.1038/nature10317.
[30] HAGEMANN L,GRüNDEL A,JACOBS E,et al.The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix[J].Pathog Dis,2017,75(3):1-12.DOI:10.1093/femspd/ftx017.
[31] BAIDA G E,KUZMIN N P.Mechanism of action of hemolysin Ⅲ from Bacillus cereus[J].Biochim Biophys Acta,1996,1284(2):122-124.DOI:10.1016/s0005-2736(96)00168-x.
[32] CHURCHILL R L,LEE H,HALL J C.Detection of Listeria monocytogenes and the toxin listeriolysin O in food[J].J Microbiol Methods,2006,64(2):141-170.DOI:10.1016/j.mimet.2005.10.007.
[33] STANLEY P,KORONAKIS V,HUGHES C.Acylation of Escherichia coli hemolysin: A unique protein lipidation mechanism underlying toxin function[J].Microbiol Mol Biol Rev,1998,62(2):309-333.DOI:10.1128/MMBR.62.2.309-333.1998.
[34] HILTBOLD E M,ZIEGLER H K.Mechanisms of processing and presentation of the antigens of Listeria monocytogenes[J].Infect Agents Dis,1993,2(5):314-323.
[35] MENESTRINA G,MOSER C,PELLET S,et al.Pore-formation by Escherichia coli hemolysin(HlyA)and other members of the RTX toxins family[J].Toxicology,1994,87(1/2/3):249-267.DOI:10.1016/0300-483x(94)90254-2.
[36] RíO S J,OSORIO C R,LEMOS M L.Heme uptake genes in human and fish isolates of Photobacterium damselae: Existence of hutA pseudogenes[J].Arch Microbiol,2005,183(5):347-358.DOI:10.1007/s00203-005-0779-4.
[37] NAOE Y,NAKAMURA N,DOI A,et al.Crystal structure of bacterial haem importer complex in the inward-facing conformation[J].Nat Commun,2016,7:13411.DOI:10.1038/ncomms13411.
[38] OSORIO C R,JUIZ-RO íS,LEMOS M L.The ABC-transporter hutCD genes of Photobacterium damselae subsp. piscicida are essential for haem utilization as iron source and are expressed during infection in fish[J].J Fish Dis,2010,33(8):649-655.DOI:10.1111/j.1365-2761.2010.01169.x.
[39] CUíV P O,KEOGH D,CLARKE P,et al.The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores,ferrichrome and ferrioxamine B[J].Mol Microbiol,2008,70(5):1261-1273.DOI:10.1111/j.1365-2958.2008.06479.x.
[40] IDEI A,KAWAI E,AKATSUKA H,et al.Cloning and characterization of the Pseudomonas fluorescens ATP-binding cassette exporter,HasDEF,for the heme acquisition protein HasA[J].J Bacteriol,1999,181(24):7545-7551.DOI:10.1128/JB.181.24.7545-7551.1999.
[41] WANG Liying,BROWN L,ELLIOTT M,et al.Regulation of heme biosynthesis in Salmonella typhimurium: Activity of glutamyl-tRNA reductase(HemA)is greatly elevated during heme limitation by a mechanism which increases abundance of the protein[J].J Bacteriol,1997,179(9):2907-2914.DOI:10.1128/jb.179.9.2907-2914.1997.
[42] DAILEY H A,DAILEY T A,GERDES S,et al.Prokaryotic heme biosynthesis: Multiple pathways to a common essential product[J].Microbiol Mol Biol Rev,2017,81(1):e00048-16.DOI:10.1128/MMBR.00048-16.
[43] BRUMBAUGH A R,SMITH S N,SUBASHCHANDRABOSE S,et al.Blocking yersiniabactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection[J].Infect Immun,2015,83(4):1443-1450.DOI:10.1128/IAI.02904-14.
[44] ELHOSARY M A,BAHEY-EL-DIN M,ABDELBARY A,et al.Immunization with the ferric iron-binding periplasmic protein HitA provides protection against Pseudomonas aeruginosa in the murine infection model[J].Microb Pathog,2019,131:181-185.DOI:10.1016/j.micpath.2019.04.014.
[45] FOURIE K R,WILSON H L.Understanding GroEL and DnaK stress response proteins as antigens for bacterial diseases[J].Vaccines(Basel),2020,8(4):773.DOI:10.3390/vaccines8040773.
[46] CHATURVEDI K S,HUNG C S,GIBLIN D E,et al.Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic[J].ACS Chem Biol,2014,9(2):551-561.DOI:10.1021/cb400658k.
[47] KOH E I,ROBINSON A E,BANDARA N,et al.Copper import in Escherichia coli by the yersiniabactin metallophore system[J].Nat Chem Biol,2017,13(9):1016-1021.DOI:10.1038/nchembio.2441.
[48] MOSCATELLO N J,PFEIFER B A.Yersiniabactin metal binding characterization and removal of nickel from industrial wastewater[J].Biotechnol Prog,2017,33(6):1548-1554.DOI:10.1002/btpr.2542.
[49] LIGTHART K,BELZER C,DE VOS W M,et al.Bridging bacteria and the gut: Functional aspects of type IV pili[J].Trends Microbiol,2020,28(5):340-348.DOI:10.1016/j.tim.2020.02.003.
[50] CRAIG L,PIQUE M E,TAINER J A.Type IV pilus structure and bacterial pathogenicity[J].Nat Rev Microbiol,2004,2(5):363-378.DOI:10.1038/nrmicro885.
[51] XICOHTENCATL-CORTES J,MONTERIRO-NETO V,SALDA?A Z,et al.The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes[J].J Bacteriol,2009,191(1):411-421.DOI:10.1128/JB.01306-08.
[52] MAZARIEGO-ESPINOSA K,CRUZ A,LEDESMA M A,et al.Longus,a type IV pilus of enterotoxigenic Escherichia coli, is involved in adherence to intestinal epithelial cells[J].J Bacteriol,2010,192(11):2791-2800.DOI:10.1128/JB.01595-09.
[53] MUNDY R,PICKARD D,WILSON R K,et al.Identification of a novel type IV pilus gene cluster required for gastrointestinal colonization of Citrobacter rodentium[J].Mol Microbiol,2003,48(3):795-809.DOI:10.1046/j.1365-2958.2003.03470.x.
[54] PERSAT A,INCLAM Y F,ENGEL J N,et al.Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa[J].Proc Natl Acad Sci USA,2015,112(24):7563-7568.DOI:10.1073/pnas.1502025112.
[55] FRYE S A,L?NG E L,BEYENE G T,et al.The inner membrane protein PilG interacts with DNA and the secretin PilQ in transformation[J].PLoS One,2015,10(8):e0134954(1-25).DOI:10.1371/journal.pone.0134954.
[56] DARZINS A.The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY[J].J Bacteriol,1993,175(18):5934-5944.DOI:10.1128/jb.175.18.5934-5944.1993.
[57] WU S S,WU Jie,CHENG Y L,et al.The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus[J].Mol Microbiol,1998,29(5):1249-1261.DOI:10.1046/j.1365-2958.1998.01013.x.
[58] HOBBS M,COLLIE E S,FREE P D,et al.PilS and PilR,a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa[J].Mol Microbiol,1993,7(5):669-682.DOI:10.1111/j.1365-2958.1993.tb01158.x.
[59] KUZMICH S,SKOTNICKA D,SZADKOWSKI D,et al.Three pilZ domain proteins,PlpA,PixA,and PixB,have distinct functions in regulation of motility and development in Myxococcus xanthus[J].J Bacteriol,2021,203(13):e00126-21.DOI:10.1128/JB.00126-21.
[60] MACNAB R M.How bacteria assemble flagella[J].Annu Rev Microbiol,2003,57:77-100.DOI:10.1146/annurev.micro.57.030502.09083.
[61] GUERRY P.Campylobacter flagella: Not just for motility[J].Trends Microbiol,2007,15(10):456-461.DOI:10.1016/j.tim.2007.09.006.
[62] VAN VLIET A H,KETLEY J M.Pathogenesis of enteric Campylobacterinfection[J].Symp Ser Soc Appl Microbiol,2001,(30):45S-56S.DOI:10.1046/j.1365-2672.2001.01353.x.
[63] WALLIS M R.The pathogenesis of Campylobacter jejuni[J].Br J Biomed Sci,1994,51(1):57-64.
[64] FERRERO R L,LEE A.Motility of Campylobacter jejuni in a viscous environment: Comparison with conventional rod-shaped bacteria[J].J Gen Microbiol,1988,134(1):53-59.DOI:10.1099/00221287-134-1-53.
[65] LEE A,O’ROURKE J L,BARRINGTON P J,et al.Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: A mouse cecal model[J].Infect Immun,1986,51(2):536-546.DOI:10.1128/iai.51.2.536-546.1986.
[66] LERTSETHTAKARN P,OTTEMANN K M,HENDRIXSON D R.Motility and chemotaxis in Campylobacter and Helicobacte[J].Annu Rev Microbiol,2011,65:389-410.DOI:10.1146/annurev-micro-090110-102908.
[67] SAIJO-HAMANO Y,MATSUNAMI H,NAMBA K,et al.Architecture of the bacterial flagellar distal rod and hook of Salmonella[J].Biomolecules,2019,9(7):260-271.DOI:10.3390/biom9070260.
[68] MINAMINO T,YAMAGUCHI S,MACNAB R M.Interaction between FliE and FlgB,a proximal rod component of the flagellar basal body of Salmonella[J].J Bacteriol,2000,182(11):3029-3036.DOI:10.1128/JB.182.11.3029-3036.2000.
[69] MINAMINO T.Protein export through the bacterial flagellar type Ⅲ export pathway[J].Biochim Biophys Acta,2014,1843(8):1642-1648.DOI:10.1016/j.bbamcr.2013.09.005.
[70] MINAMINO T,INOUE Y,KINOSHITA M,et al.FliK-driven conformational rearrangements of FlhA and FlhB are required for export switching of the flagellar protein export apparatus[J].J Bacteriol,2020,202(3):e00637-19.DOI:10.1128/JB.00637-19.
[71] BARKER C S,MESHCHERYAKOVA I V,INOUE T,et al.Assembling flagella in Salmonella mutant strains producing a type Ⅲ export apparatus without FliO[J].J Bacteriol,2014,196(23):4001-4011.DOI:10.1128/JB.02184-14.
[72] BURNHAM P M,HENDRIXSON D R.Campylobacter jejuni: Collective components promoting a successful enteric lifestyle[J].Nat Rev Microbiol,2018,16(9):551-565.DOI:10.1038/s41579-018-0037-9.
[73] ZHAO Ronghao,PATHAK N,JAFFE H,et al.FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body[J].J Mol Biol,1996,261(2):195-208.DOI:10.1006/jmbi.1996.0452.
[74] PEREIRA M,PAENTE J A,BATAUS L A,et al.Chemotaxis and flagellar genes of Chromobacterium violaceum[J].Genet Mol Res,2004,3(1):92-101.
[75] NAKAMURA S,MINAMINO T.Flagella-driven motility of Bacteria[J].Biomolecules,2019,9(7):279-302.DOI:10.3390/biom9070279.
[76] NAMBU T,MINAMINA T,MACNAB R M,et al.Peptidoglycan-hydrolyzing activity of the FlgJ protein,essential for flagellar rod formation in Salmonella typhimurium[J].J Bacteriol,1999,181(5):1555-1561.DOI:10.1128/JB.181.5.1555-1561.1999.
[77] OHNISHI K,OHTO Y,AIZAWA S,et al.FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium[J].J Bacteriol,1994,176(8):2272-2281.DOI:10.1128/jb.176.8.2272-2281.1994.
[78] MüLLER V,JONES C J,KAWAGISHI I,et al.Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex[J].J Bacteriol,1992,174(7):2298-2304.DOI:10.1128/jb.174.7.2298-2304.199.
[79] DASGUPTA N,RAMPHAL R.Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa[J].J Bacteriol,2001,183(22):6636-6644.DOI:10.1128/JB.183.22.6636-6644.2001.
[80] JONES C J,HOMMA M,MACNAB R M.L-,P-,and M-ring proteins of the flagellar basal body of Salmonella typhimurium: Gene sequences and deduced protein sequences[J].J Bacteriol,1989,171(7):3890-3900.DOI:10.1128/jb.171.7.3890-3900.1989.
[81] GONZáLEZ-PEDRAJO B,DE LA MORA J,BALLADO T,et al.Characterization of the flgG operon of Rhodobacter sphaeroides WS8 and its role in flagellum biosynthesis[J].Biochim Biophys Acta,2002,1579(1):55-63.DOI:10.1016/s0167-4781(02)00504-3.
[82] BALLADO T,CAMARENA L,GONZáLEZ-PEDRAJO B,et al.The hook gene(flgE)is expressed from the flgBCDEF operon in Rhodobacter sphaeroides: Study of an flgE mutant[J].J Bacteriol,2001,183(5):1680-1687.DOI:10.1128/JB.183.5.1680-1687.2001.
[83] FAUCONNIER A,ALLAOUI A,CAMPOS A,et al.Flagellar flhA,flhB and flhE genes,organized in an operon,cluster upstream from the inv locus in Yersinia enterocolitica[J].Microbiology(Reading),1997,143( 11):3461-3471.DOI:10.1099/00221287-143-11-3461.
[84] LECLERC G,WANG Shuiping,ELY B.A new class of Caulobacter crescentus flagellar genes[J].J Bacteriol,1998,180(19):5010-5019.DOI:10.1128/JB.180.19.5010-5019.1998.
[85] LIU Xiaoying,MATSUMURA P.The FlhD/FlhC complex, a transcriptional a ctivator of the Escherichia coli flagellar class II operons[J].J Bacteriol,1994,176(23):7345-7351.DOI:10.1128/jb.176.23.7345-7351.
[86] OHNISHI K,KUTSUKAKE K,SUZUKI H,et al.Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium[J].Mol Gen Genet,1990,221(2):139-147.DOI:10.1007/BF00261713.
[87] KRISTICH C J,ORDAL G W.Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis[J].J Biol Chem,2002,277(28):25356-25362.DOI:10.1074/jbc.M201334200.
[88] WELCH M,OOSAWA K,AIZAWA S I,et al.Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria[J].Proc Natl Acad Sci USA,1993,90(19):8787-8791.DOI:10.1073/pnas.90.19.8787.
[89] MOON K H,HOBBS G,MOTALEB M A.Borrelia burgdorferi CheD promotes various functions in chemotaxis and the pathogenic life cycle of the spirochete[J].Infect Immun,2016,84(6):1743-1752.DOI:10.1128/IAI.01347-15.
[90] DURáN N,MENCK C F M.Chromobacterium violaceum: A review of pharmacological and industiral perspectives[J].Crit Rev Microbiol,2001,27(3):201-222.DOI:10.1080/20014091096747.
[91] GORDON A H,HART P D A,YOUNG M R.Ammonia inhibits phagosome-lysosome fusion inmacrophages[J].Nature,1980,286(5768):79-80.DOI:10.1038/286079a0.
[92] MAZZEI L,MUSIANIL F,CIURLI S.The structure-based reaction mechanism of urease,a nickel dependent enzyme:tale of a long debate[J].J Biol Inorg Chem,2020,25(6):829-845.DOI:10.1007/s00775-020-01808-w.
[93] MOBLEY H L.The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration[J].Aliment Pharmacol Ther,1996,10(Suppl 1):57-64.DOI:10.1046/j.1365-2036.1996.22164006.x.
[94] RIOT B,BERCHE P,SIMONET M.Urease is not involved in the virulence of Yersinia pseudotuberculosis in mice[J].Infect Immun,1997,65(5):1985-90.DOI:10.1128/iai.65.5.1985-1990.1997.
[95] NOLDEN L,BECKERS G,M?CKEL B,et al.Urease of Corynebacterium glutamicum: Organization of corresponding genes and investigation of activity[J].FEMS Microbiol Lett,2000,189(2):305-310.DOI:10.1111/j.1574-6968.2000.tb09248.x.
[96] BAGCHI D,BHAITACHARYA G,STOHS S J.Production of reactive oxygen species by gastric cells in association with Helicobacter pylori[J].Free Radic Res,1996,24(6):439-450.DOI:10.3109/10715769609088043.
[97] TSUGAWA H,MORI H,MATSUZAKI J,et al.Nordihydroguaiaretic acid disrupts the antioxidant ability of Helicobacter pylori through the repression of SodB activity in vitro[J].Biomed Res Int,2015,2015:734548(1-8).DOI:10.1155/2015/734548.
[98] CANDELA M,CENTANNI M,FIORI J,et al.DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts[J].Microbiology(Reading),2010,156(6):1609-1618.DOI:10.1099/mic.0.038307-0.
[99] SPRINZL M.Elongation factor Tu: A regulatory GTPase with an integrated effector[J].Trends Biochem Sci,1994,19(6):245-250.DOI:10.1016/0968-0004(94)90149-x.
[100] HARVEY K L,JAROCKI V M,CHARLES I G,et al.The diverse functional roles of elongation factor Tu(EF-Tu)in microbial pathogenesis[J].Front Microbiol,2019,10:2351(1-19).DOI:10.3389/fmicb.2019.02351.
[101] GRANATO D,BERGONZALLI G E,PRIDMORE R D,et al.Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533(La1)to human intestinal cells and mucins[J].Infect Immun,2004,72(4):2160-2169.DOI:10.1128/IAI.72.4.2160-2169.2004.
[102] CHIU K H,WANG Linghui,TSAI T T,et al.Secretomic analysis of host-pathogen interactions reveals that elongation factor-Tu is a potential adherence factor of Helicobacter pylori during pathogenesis[J].J Proteome Res,2017,16(1):264-273.DOI:10.1021/acs.jproteome.6b00584.
[103] WINN W C JR.Legionnaires disease: Historical perspective[J].Clin Microbiol Rev,1988,1(1):60-81.DOI:10.1128/CMR.1.1.60.
[104] MC DADE J E,SHEPARD C C,FRASER D W,et al.Legionnaires disease: Isolation of a bacterium and demonstration of its role in other respiratory disease[J].N Engl J Med,1977,297(22):1197-1203.DOI:10.1056/NEJM197712012972202.
[105] CIANCIOTTO N P,STAMOS J K,KAMP D W.Infectivity of Legionella pneumophila mip mutant for alveolar epithelialcells[J].Curr Microbiol,1995,30(4):247-250.DOI:10.1007/BF00293641.
[106] HELBIG J H,LüCK P C,STEINERT M,et al.Immunolocalization of the Mip protein of intracellularly and extracellularly grown Legionella pneumophila[J].Lett Appl Microbiol,2001,32(2):83-88.DOI:10.1046/j.1472-765x.2001.00861.x..
[107] K?HLER R,FANGHA?NEL J,K?NIG B,et al.Biochemical and functional analyses of the Mip protein: Influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila[J].Infect Immun,2003,71(8):4389-4397.DOI:10.1128/IAI.71.8.4389-4397.2003.
[108] CIANCIOTTO N P,EISENSTEIN B I,MODY C H,et al.A mutation in the mip gene results in an attenuation of Legionella pneumophila virulence[J].J Infect Dis,1990,162(1):121-126.DOI:10.1093/infdis/162.1.121.PMID:2355188.
[109] HELBIG J H,K?NIG B,KNOSPE H,et al.The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells[J].Biol Chem,2003,384(1):125-137.DOI:10.1515/BC.2003.013.
[110] SUSA M,HACKER J,MARRE R.De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells[J].Infect Immun,1996,64(5):1679-1684.DOI:10.1128/iai.64.5.1679-1684.1996.
[111] WAGNER C,KHAN A S,KAMPHAUSEN T,et al.Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix[J].Cell Microbiol,2007,9(2):450-462.DOI:10.1111/j.1462-5822.2006.00802.x.
[112] PORANKIEWICZ J,WANG Jimin,CLARKE A K.New insights into the ATP-dependent Clp protease: Escherichia coli and beyond[J].Mol Microbiol,1999,32(3):449-458.DOI:10.1046/j.1365-2958.1999.01357.x.
[113] KWON H Y,OGUNNIYI A D,CHOI M H,et al.The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge[J].Infect Immun,2004,72(10):5646-5653.DOI:10.1128/IAI.72.10.5646-5653.2004.
[114] ROUQUETTE C,RIPIO M T,PELLEGRINI E,et al.Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes[J].Mol Microbiol,1996,21(5):977-987.DOI:10.1046/j.1365-2958.1996.641432.x.
[115] TOMOYASU T,TABATA A,IMAKI H,et al.Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity[J].Cell Stress Chaperones,2012,17(1):41-55.DOI:10.1007/s12192-011-0284-4.
[116] TAKAYA A,TOMOYASU T,MATSUI H,et al.The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages,leading to systemic infection[J].Infect Immun,2004,72(3):1364-1373.DOI:10.1128/IAI.72.3.1364-1373.2004.
[117] K?HLER S,EKAZA E,PAQUET J Y,et al.Induction of dnaK through its native heat shock promoter is necessary for intramacrophagic replication of Brucella suis[J].Infect Immun,2002,70(3):1631-1634.DOI:10.1128/IAI.70.3.1631-1634.2002.
[118] MALONEY K E,VALVANO M A.The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages[J].Infect Immun,2006,74(10):5477-5486.DOI:10.1128/IAI.00798-06.
[119] MOIGNEV V L,BELON C,GOULARD C,et al.MgtC as a host-induced factor and vaccine candidate against Mycobacterium abscessus infection[J].Infect Immun,2016,84(10):2895-2903.DOI:10.1128/IAI.00359-16.
[120] BELON C,GANNOUN-ZAKI L,LUTFALLA G,et al.Mycobacterium marinum MgtC plays a role in phagocytosis but is dispensable for intracellular multiplication[J].PLoS One,2014,9(12):e116052(1-23).DOI:10.1371/journal.pone.0116052.
[121] RETAMAL P,CASTILLO-RUIZ M,MORA G C.Characterization of MgtC,a virulence factor of Salmonella enterica serovar typhi[J].PLoS One,2009,4(5):e5551(1-6).DOI:10.1371/journal.pone.0005551.
[122] CAFIERO J H,LAMBERTI Y A,SURMANN K,et al.A Bordetella pertussis MgtC homolog plays a role in the intracellular survival[J].PLoS One,2018,13(8):e0203204.DOI:10.1371/journal.pone.0203204.
[123] HAGINS J M,LOCY R,SILO-SUH L.Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa[J].J Bacteriol,2009,191(20):6335-6339.DOI:10.1128/JB.00692-09.
[124] BERNUT A,BELON C,SOSCIA C,et al.Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way[J].Microb Cell,2015,2(9):353-355.DOI:10.15698/mic2015.09.227.
[125] MC KINNEY J D,H?NER ZU BENTRUP K,MU?OZ-ELíAS E J,et al.Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase[J].Nature,2000,406(6797):735-738.DOI:10.1038/35021074.
[126] LINDSEY T L,HAGINS J M,SOKOL P A,et al.Virulence determinants from a cystic fibrosis isolate of Pseudomonas aeruginosa include isocitrate lyase[J].Microbiology(Reading),2008,154(6):1616-1627.DOI:10.1099/mic.0.2007/014506-0.

相似文献/References:

[1]王慧,明德松,王明席.一株多药耐药Comamonas kerstersii细菌的基因组分析(英文)[J].华侨大学学报(自然科学版),2024,45(1):35.[doi:10.11830/ISSN.1000-5013.202311012]
 WANG Hui,MING Desong,WANG Mingxi.Genomic Insights of A Multi-Drug Resistant Comamonas kerstersii Isolate[J].Journal of Huaqiao University(Natural Science),2024,45(3):35.[doi:10.11830/ISSN.1000-5013.202311012]

备注/Memo

备注/Memo:
收稿日期: 2023-11-09
通信作者: 王明席(1969-),男,副教授,博士,主要从事临床细菌生物信息学的研究。E-mail:mxwang@hqu.edu.cn。
基金项目: 福建省厦门南方海洋研究中心科研资金资助项目(14GYY008NF08);方树福堂基金会和方润华基金会资助项目(14X30127)
更新日期/Last Update: 2024-05-20