[1]刘安,习明星,邵志超,等.应用LMDI模型的江西省交通运输业碳排放驱动力分析[J].华侨大学学报(自然科学版),2024,45(2):276-282.[doi:10.11830/ISSN.1000-5013.202312031]
 LIU An,XI Mingxing,SHAO Zhichao,et al.Driving Force Analysis of Transportation Industry Carbon Emissions in Jiangxi Province Using LMDI Model[J].Journal of Huaqiao University(Natural Science),2024,45(2):276-282.[doi:10.11830/ISSN.1000-5013.202312031]
点击复制

应用LMDI模型的江西省交通运输业碳排放驱动力分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第2期
页码:
276-282
栏目:
出版日期:
2024-03-20

文章信息/Info

Title:
Driving Force Analysis of Transportation Industry Carbon Emissions in Jiangxi Province Using LMDI Model
文章编号:
1000-5013(2024)02-0276-07
作者:
刘安12 习明星1 邵志超2 李雪洁3
1. 江西省交通投资集团有限责任公司, 江西 南昌 330000;2. 江西省交通咨询有限公司, 江西 南昌 330000;3. 同济大学 城市交通研究院, 上海 200092
Author(s):
LIU An12 XI Mingxing1 SHAO Zhichao2 LI Xuejie3
1. Jiangxi Province Transportation Investment Group Limited Company, Nanchang 330000, China; 2. Jiangxi Province Transportation Consulting Limited Company, Nanchang 330000, China; 3. Urban Mobility Institute, Tongji Univercity, Shanghai 200092, China
关键词:
碳排放 交通运输业 驱动力因素 对数平均权重(LMDI)法 公路运输 江西省
Keywords:
carbon emissions transportation industry driving force factor logarithmic mean weight division index(LMDI)method highway transportation Jiangxi Province
分类号:
U116.1
DOI:
10.11830/ISSN.1000-5013.202312031
文献标志码:
A
摘要:
通过统计分析江西省2011-2020年公路运输、水路运输、铁路运输和民航运输总的能源消耗数据,确定了江西省交通运输业二氧化碳排放的变化趋势。利用对数平均权重(LMDI)法,分析了模式分担、能源结构、规模效应、能源强度、经济效应对江西省交通运输部门碳排放变化产生的不同影响。研究结果表明:2011-2020年,江西省能源使用最多的是汽油和柴油;公路运输部门是江西省交通运输部门碳排放最多的部门;对碳排放的增长起推动作用的是模式分担与经济效应,起抑制作用的是能源结构与规模效应,而能源强度波动较大。
Abstract:
Through statistic analysis of the total energy consumption data of the road transportation, the waterway transportation, the railway transportation, and the civil aviation transportation in Jiangxi Province from 2011 to 2020, the change trend of carbon dioxide emissions from the transportation industry in Jiangxi Province is determined. Using the logarithmic mean weight division index(LMDI)method, the mode sharing, the energy structure, the scale effect, the energy intensity, and the economic effect on the carbon emission changes of the transportation sector in Jiangxi Province are analyzed. The research results show that from 2011 to 2020, the gasoline and diesel are the most used energy sources in Jiangxi Province; highway transportation is the sector with the highest carbon emission in the transportation sectors of Jiangxi Province; the mode sharing and the economic effect play a driving role in the growth of carbon emission, the energy structure effect and the scale effect play a restraining role, while the energy intensity fluctuates greatly.

参考文献/References:

[1] 杨东,李艳红,田春林.交通运输行业碳排放自然达峰特征与峰值预测研究[J/OL]. 交通运输系统工程与信息,2024(1):1-17.http://kns.cnki.net/kcms/detail/11.4520.U.20240226.1543.004.html.
[2] 喻洁,达亚彬,欧阳斌.基于LMDI分解方法的中国交通运输行业碳排放变化分析[J].中国公路学报,2015,28(10):112-119.DOI:10.19721/j.cnki.1001-7372.2015.10.015.
[3] 江西省综合交通运输事业发展中心.江西省人民政府办公厅关于印发江西省“十四五”综合交通运输体系发展规划的通知[EB/OL].(2023-02-17)[2023-11-14] .http://jxgl.jt.jiangxi.gov.cn/art/2023/2/17/art_82893_4699781.html.
[4] 国家统计局.中国统计年鉴(2012-2021)[M]. 北京:中国统计出版社,2012-2021.
[5] 江西省人民政府.最新发布关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的实施意见[EB/OL].(2022-04-06)[2023-11-14] .https://www.jiangxi.gov.cn/art/2022/4/8/art_4990_3913111.html.
[6] 江西省人民政府办公厅.关于印发江西省“十四五”能源发展规划的通知[EB/OL].(2022-05-24)[2023-11-14] .https://www.tongdow.com/zixun/xitu/hangyepinglun/2022-05-24-571089.html.
[7] CHANG C C.A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China[J].Applied Energy,2010,87(11):3533-3537.DOI:10.1016/j.apenergy.2010.05.004.
[8] ZHANG Ming,LI Huanan,ZHOU Min,et al.Decomposition analysis of energy consumption in Chinese transportation sector[J].Applied Energy,2011,88(6):2279-2285.DOI:10.1016/j.apenergy.2010.12.077.
[9] ANG B W,Zhang F Q.A survey of index decomposition analysis in energy and environmental studies[J].Energy,2000,25(12):1149-1176.DOI:10.1016/S0360-5442(00)00039-6.
[10] ANG B W,LIU F L.A new energy decomposition method: Perfect in decomposition and consistent in aggregation[J].Energy,2001,26(6):537-548.DOI:10.1016/S0360-5442(01)00022-6.
[11] ZHANG Yuejun,DA Yabin.The decomposition of energy-related carbon emission and its decoupling with economic growth in China[J].Renewable and Sustainable Energy Reviews,2015,41:1255-1266.DOI:10.1016/j.rser.2014.09.021.
[12] SCHOLL L,SCHIPPER L,KIANG N.CO2 emissions from passenger transport[J].Energy Policy,1996,24(1):17-30.DOI:10.1016/0301-4215(95)00148-4.
[13] MAZZARINO M.The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy[J].Energy Policy,2000,28(10):957-966.
[14] LAKSHMANAN T R,HAN Xiaoli.Factors underlying transportation CO2 emissions in the USA: A decomposition analysis[J].Transportation Research Part D: Transport and Environment,1997,2(1):1-15.DOI:10.1016/S1361-9209(96)00011-9.
[15] LU I J,LIN S J,LEWIS C.Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea[J].Energy Policy,2007,35(6):3226-3235.DOI:10.1016/j.enpol.2006.11.003.
[16] TIMILSINA G R,SHRESTHA A.Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean Countries: An LMDI decomposition analysis[J].International Journal of Energy Research,2009,33(4):396-414.DOI:10.1002/er.1486.
[17] LUO Xiao,DONG Liang,DOU Yi,et al.Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges[J].Journal of Transport Geography,2016,56:1-14.DOI:10.1016/j.jtrangeo.2016.08.010.
[18] WEI Qingqi,ZHAO Songzheng,XIAO Wei.A quantitative analysis of carbon emissions reduction ability of transportation structure optimization in China[J].Journal of Transportation Systems Engineering and Information Technology,2013,13(3):10-17.DOI:10.1016/S1570-6672(13)60109-9.
[19] WANG Wenwen,ZHANG Min,ZHOU Min.Using LMDI method to analyze transport sector CO2 emissions in China[J].Energy,2011,36(10):5909-5915.DOI:10.1016/j.energy.2011.08.031.
[20] 江西省统计局,国家统计局江西调查总队.江西统计年鉴(2012-2021)[M].北京:中国统计出版社,2012-2021.
[21] 中国国家铁路集团有限公司.中国铁道年鉴(2012-2021)[M].北京:中国国家铁路集团有限公司,2012-2021.
[22] 国家统计局能源统计司.中国能源统计年鉴(2012-2021)[M].北京:中国统计出版社,2012-2021.
[23] 环境保护部.非道路移动源大气污染物排放清单编制技术指南(试行)[Z].北京:环境保护部,2014.
[24] 《交通大辞典》编委会.交通大辞典[M].上海:上海交通大学出版社,2005.
[25] 王庆一.按国际准则计算的中国终端用能和能源效率[J].中国能源,2006,28(12):5-9.
[26] 王庆一.2019能源数据[R].北京:绿色创新发展中心,2019.
[27] The intergovernmental panel on climate change(IPCC).2006 IPCC guidelines for national greenhouse gas inventories [EB/OL].(2020-07-01)[2020-09-22] .https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

相似文献/References:

[1]邹利林,刘佳玲,王建英.中国旅游业碳排放时空特征及影响因素分解[J].华侨大学学报(自然科学版),2024,45(1):71.[doi:10.11830/ISSN.1000-5013.202304007]
 ZOU Lilin,LIU Jialing,WANG Jianying.Spatial-Temporal Characteristics and Decomposition of Influencing Factors of Carbon Emissions of China’s Tourism Industry[J].Journal of Huaqiao University(Natural Science),2024,45(2):71.[doi:10.11830/ISSN.1000-5013.202304007]

备注/Memo

备注/Memo:
收稿日期: 2023-12-03
通信作者: 刘安(1988-),男,高级工程师,主要从事公路与桥梁工程方面的研究。 E-mail:547001499@qq.com。
基金项目: 国家自然科学面上基金资助项目(52372340); 江西省交通厅重点项目(2022C0003); 学科交叉联合攻关项目(2022-5-YB-03); 上海市自然科学基金资助项目(21ZR1466600)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2024-03-20