[1]张镕哲,陈林聪.非高斯波浪作用下深水高墩的非线性随机振动[J].华侨大学学报(自然科学版),2024,45(2):233-240.[doi:10.11830/ISSN.1000-5013.202312028]
 ZHANG Rongzhe,CHEN Lincong.Nonlinear Random Vibration of Deep-Water-High-Pier Under Non-Gaussian Wave Action[J].Journal of Huaqiao University(Natural Science),2024,45(2):233-240.[doi:10.11830/ISSN.1000-5013.202312028]
点击复制

非高斯波浪作用下深水高墩的非线性随机振动()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第2期
页码:
233-240
栏目:
出版日期:
2024-03-20

文章信息/Info

Title:
Nonlinear Random Vibration of Deep-Water-High-Pier Under Non-Gaussian Wave Action
文章编号:
1000-5013(2024)02-0233-08
作者:
张镕哲 陈林聪
华侨大学 土木工程学院, 福建 厦门 361021
Author(s):
ZHANG Rongzhe CHEN Lincong
College of Civil Engineering, Huaqiao University, Xiamen 361021, China
关键词:
深水高墩 非高斯随机波浪 泊松白噪声 径向基神经网络 瞬态响应
Keywords:
deep-water-high-pier non-Gaussian random wave Poisson white noise radial basis function neural network transient response
分类号:
U442.55
DOI:
10.11830/ISSN.1000-5013.202312028
文献标志码:
A
摘要:
首先,建立非高斯波浪作用下深水高墩的随机动力学模型,采用泊松白噪声激励模拟非高斯随机波浪过程,利用达朗贝尔原理和伽辽金方法推导深水高墩的运动方程。然后,通过径向基神经网络法求解广义FPK方程,获得系统的瞬态响应概率密度函数。最后,考察不同结构参数对系统响应的影响,并采用蒙特卡罗模拟(MCS)验证理论解。结果表明:理论解与模拟结果吻合良好;浸入比和质量比增加均会放大高墩的响应;采用高斯模型会使结构设计偏于保守。
Abstract:
A random dynamic model is established for deep-water-high-pier under non-Gaussian wave action, the non-Gaussian random wave process is simulated using Poisson white noise excitation, and the motion equation of the deep-water-high-pier is derived by D’Alembert principle and the Galerkin method. The radial basis function neural network method is used to solve the generalized FPK equation, obtaining the transient response probability density function of the system. The effects of different structural parameters on the response of the system are examined, and the theoretical solutions are verified by Monte Carlo simulation(MCS). The results show that the theoretical solutions agree well with the simulation results. The increase of immersion ratio and mass ratio will amplify the response of the high pier. Gaussian model tends to conservative structural designs.

参考文献/References:

[1] ISTRATI D,BUCKLE I,LOMONACO P,et al.Deciphering the tsunami wave impact and associated connection forces in open-girder coastal bridges[J].Journal of Marine Science and Engineering,2018,6(4):148.DOI:10.3390/jmse60-40148.
[2] TI Zilong,ZHANG Mingjin,LI Yongle,et al.Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads[J].Engineering Structures,2019,196:109287.DOI:10.1016/j.engstr-uct.2019.109287.
[3] HUANG Bo,LUO Wenlong,REN Qingyang,et al.Random wave forces on the submerged box-girder superstructure of coastal bridges based on potential flow theory[J].Ocean Engineering,2022,248:110739.DOI:10.1016/j.ocean- eng.2022.110739.
[4] WEI Kai,HONG Jie,JIANG Mochen,et al.A review of breaking wave force on the bridge pier: Experiment, simulation, calculation, and structural response[J].Journal of Traffic and Transportation Engineering(English Edition),2022,9(3):407-421.DOI:10.1016/j.jtte.2021.03.006.
[5] FANG Chen,TANG Haojun,LI Yongle,et al.Stochastic response of a cable-stayed bridge under non-stationary winds and waves using different surrogate models[J].Ocean Engineering,2020,199:106967.DOI:10.1016/j.ocea-neng.2020.106967.
[6] LI Chao,WU Guoyi,LI Luxi,et al.A comprehensive performance evaluation methodology for sea-crossing cable-stayed bridges under wind and wave loads[J].Ocean Engineering,2023,280:114816.DOI:10.1016/j.oceaneng.2023.114816.
[7] 李忠献,黄信.地震和波浪联合作用下深水桥梁的动力响应[J].土木工程学报,2012,45(11):134-140.DOI:10.15951/j.tmgcxb.2012.11.002.
[8] TI Zilong,YOU Hengrui.Time domain boundary element modeling of coupled interaction between ocean wave and elastic bridge pier[J].Ocean Engineering,2023,269:113527.DOI:10.1016/j.oceaneng.2022.113527.
[9] DING Yang,MA Rui,SHI Yundong,et al.Underwater shaking table tests on bridge pier under combined earthquake and wave-current action[J].Marine Structures,2018,58:301-320.DOI:10.1016/j.marstruc.2017.12.004.
[10] YUN Gaojie,LIU Chunguang.Shaking table tests on a deep-water high-pier whole bridge under joint earthquake, wave and current action[J].Applied Ocean Research,2020,103:102329.DOI:10.1016/j.apor.2020.102329.
[11] XU Bo,WEI Kai,QIN Shunquan,et al.Experimental study of wave loads on elevated pile cap of pile group foundation for sea-crossing bridges[J].Ocean Engineering,2020,197:106896.DOI:10.1016/j.oceaneng.2019.106896.
[12] FANG Qinghe,LIU Jiabin,HONG Rongcan,et al.Experimental investigation of focused wave action on coastal bridges with box girder[J].Coastal Engineering,2021,165:103857.DOI:10.1016/j.coastaleng.2021.103857.
[13] ZHAO Z,LOW Y M.Extreme value analysis of high-dimensional Gaussian vector processes[J].Journal of Sound and Vibration,2023,567:118067.DOI:10.1016/j.jsv.2023.118067.
[14] ZHU Haitao,GENG Guoqian,YU Yang,et al.Probabilistic analysis on parametric random vibration of a marine riser excited by correlated Gaussian white noises[J].International Journal of Non-Linear Mechanics,2020,126:103578.DOI:10.1016/j.ijnonlinmec.2020.103578.
[15] CHEN Jia,YANG Jianming,SHEN Kunfan,et al.Probability density analysis of nonlinear random ship rolling[J].Journal of Ocean University of China,2023,22(5):1227-1242.DOI:10.1007/s11802-023-5323-0.
[16] ZENG Yan,ZHU Weiqiu.Stochastic averaging of quasi-nonintegrable-Hamiltonian systems under Poisson white noise excitation[J].Journal of Applied Mechanics,2011,78(2):021002.DOI:10.1115/1.4002528.
[17] ER Guokang,ZHU Haitao,IU V P,et al.Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise[J].Science China Technological Sciences,2011,54:1121-1125.DOI:10.1007/s11431-011-4342-z.
[18] SONG Xiancang,JIA Yonggang,WANG Shuqing,et al.A modified straightforward spectral representation method for accurate and efficient simulation of the stationary non-Gaussian stochastic wave[J].Ocean Engineering,2020,205:107308.DOI:10.1016/j.oceaneng.2020.107308.
[19] PRATIHER B,DWIVEDY S K.Nonlinear response of a soft magneto elastic cantilever beam with end mass under static and dynamics magnetic field[J].Journal of Vibration and Control,2011,17(9):1394-1406.DOI:10.1177/1077546309-358972.
[20] KUMAR P,NARAYANAN S,GUPTA S.Stochastic bifurcation analysis of a duffing oscillator with coulomb friction excited by poisson white noise[J].Procedia Engineering,2016,144:998-1006.DOI:10.1016/j.proeng.2016.05.032.
[21] LIU Weiyan,YIN Xunru,GUO Zhongjin,et al.Feedback stabilization of quasi nonintegrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations[J].Probabilistic Engineering Mechanics,2023,71:103407.DOI:10.1016/j.probengmech.2022.103407.
[22] 叶文伟,陈林聪,孙建桥.泊松白噪声激励下强非线性系统的半解析瞬态解[J].力学学报,2022,54(12):3468-3476.DOI:10.6052/0459-1879-22-381.

备注/Memo

备注/Memo:
收稿日期: 2023-12-25
通信作者: 陈林聪(1981-),男,教授,博士,主要从事工程结构随机振动的研究。E-mail:lincongchen@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(12072118, 12372029); 福建省杰出青年科学基金资助项目(2021J06024)
更新日期/Last Update: 2024-03-20