参考文献/References:
[1] 李琦,刘桂臻,李小春,等.多维度视角下CO2捕集利用与封存技术的代际演变与预设[J].工程科学与技术,2022,54(1):157-166.DOI:10.15961/j.jsuese.202100765.
[2] JAYASEKARA D W,RANJITH P G,WANNIARACHCHI W A M,et al.Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study[J].The Journal of Supercritical Fluids,2020,161:104819.DOI:10.1016/j.supflu.2020.104819.
[3] FENG Yongcun,ZHANG Shuai,MA Chengyun,et al.The role of geomechanics for geological carbon storage[J].Gondwana Research,2023,124:100-123.DOI:10.1016/j.gr.2023.07.003.
[4] PETER A,YANG Dongmin,ESHIET K I-I I,et al.A review of the studies on CO2-brine-rock interaction in geological storage process[J].Geosciences,2022,12(4):168.DOI:10.3390/geosciences12040168.
[5] CHENG Y X,LIU W,XU T,et al.Seismicity induced by geological CO2 storage: A review[J].Earth-Science Reviews,2023,239:104369.
[6] 魏晓琛,李琦,邢会林,等.地下流体注入诱发地震机理及其对CO2地下封存工程的启示[J].地球科学进展,2014,29(11):1226-1241.DOI: 10.11867/j.issn.1001-8166.2014.11.1226.
[7] 刘贺娟,童荣琛,侯正猛,等.地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J].工程科学与技术,2022,54(1):83-96.DOI: 10.15961/j.jsuese.202100612.
[8] WHITE J A,FOXALL W.Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges[J].International Journal of Greenhouse Gas Control,2016,49:413-424.DOI:10.1016/j.ijggc.2016.03.021.
[9] CHIQUET P,THIBEAU S,LESCANNE M,et al.Geochemical assessment of the injection of CO2 into rousse depleted gas reservoir(Part Ⅱ): Geochemical impact of the CO2 injection[J].Energy Procedia,2013,37:6383-6394.DOI:10.1016/j.egypro.2013.06.568.
[10] Ting Bao,Jeff Burghardt,Varun Gupta,et al.Impact of time-dependent deformation on geomechanical risk for geologic carbon storage[J].International Journal of Rock Mechanics and Mining Sciences,2021,148:104940.
[11] VILARRASA V,RINALDI A P,RUTQVIST J.Long-term thermal effects on injectivity evolution during CO2 storage[J].International Journal of Greenhouse Gas Control,2017,64:314-322.
[12] AKONO A T,DRUHAN J L,DáVILA G,et al.A review of geochemical-mechanical impacts in geological carbon storage reservoirs[J].Greenhouse Gases: Science and Technology,2019,9(3):474-504.DOI:10.1002/ghg.1870.
[13] JHA B,JUANES R.Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering[J].Water Resources Research,2014,50(5):3776-3808.DOI:10.1002/2013WR015175.
[14] VILARRASA V,RUTQVIST J.Thermal effects on geologic carbon storage[J].Earth-Science Reviews,2017,165:245-256.DOI:10.1016/j.earscirev.2016.12.011.
[15] KUANG Nianjie,ZHOU Junping,XIAN Xuefu,et al.Geomechanical risk and mechanism analysis of CO2 sequestration in unconventional coal seams and shale gas reservoirs[J].Rock Mechanics Bulletin,2023,2(4):100079.DOI:10.1016/j.rockmb.2023.100079.
[16] VILARRASA V,CARRERA J,OLIVELLA S,et al.Induced seismicity in geologic carbon storage[J].Solid Earth,2019,10(3):871-892.DOI:10.5194/se-2018-129.
[17] CEBRY S B L,KE C Y,MC LASKEY G C.The role of background stress state in fluid-induced aseismic slip and dynamic rupture on a 3-m laboratory fault[J].Journal of Geophysical Research: Solid Earth,2022,127(8):e2022JB024371.
[18] VILARRASA V.The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage[J].Geofluids,2016,16(5):941-953.DOI:10.1111/gfl.12197.
[19] 张建勇,崔振东,周健,等.流体注入工程诱发断层活化的风险评估方法[J].天然气工业,2018,38(8):33-40.DOI:10.3787/j.issn.1000-0976.2018.08.005.
[20] 周银邦,王锐,何应付,等.咸水层CO2地质封存典型案例分析及对比[J].油气地质与采收率,2023,30(2):162-167.DOI:10.13673/j.cnki.cn37-1359/te.202201028.
[21] 周银邦,王锐,程传捷,等.阿尔及利亚In Salah油田CO2地质封存示范工程的启示[J].地球科学与环境学报,2023,45(6):1368-1379.DOI:10.19814/j.jese.2023.03051.
[22] FINLEY R J.An overview of the Illinois Basin-Decatur Project[J].Greenhouse Gases: Science and Technology,2014,4(5):571-579.DOI:10.1002/ghg.1433.
[23] 干微.中国东北深源地震与美国德州注入诱发地震的研究及启示[D].北京:中国地质大学(北京),2015.
[24] SLAKER B,WESTMAN E,LUXBACHER K,et al.Application of double-difference seismic tomography to carbon sequestration monitoring at the Aneth Oil Field,Utah[J].Minerals,2013,3(4):352-366.DOI:10.3390/min3040352.
[25] PAYRE X,MAISONS C,MARBLé A,et al.Analysis of the passive seismic monitoring performance at the Rousse CO2 storage demonstration pilot[J].Energy Procedia,2014,63:4339-4357.DOI:10.1016/j.egypro.2014.11.469.
[26] BIRKHOLZER J T,ZHOU Quanlin,TSANG Chinfu.Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems[J].International Journal of Greenhouse Gas Control,2009,3(2):181-194.DOI:10.1016/j.ijggc.2008.08.002.
[27] ZHOU Quanlin,BIRKHOLZER J T.On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2[J].Greenhouse Gases: Science and Technology,2011,1(1):11-20.DOI:10.1002/ghg3.1.
[28] VILARRASA V,RAMíREZ C J,OLIVELLA S.Two-phase flow effects on the CO2 injection pressure evolution and implications for the caprock geomechanical stability[J].E3S Web of Conferences,2016,9:04007.DOI:10.1051/e3sconf/20160904007.
[29] VILARRASA V,CARRERA J,BOLSTER D,et al.Semianalytical solution for CO2 plume shape and pressure evolution during CO2 injection in deep saline formations[J].Transport in Porous Media,2013,97(1):43-65.
[30] OKWEN R T,STEWART M T,CUNNINGHAM J A.Temporal variations in near-wellbore pressures during CO2 injection in saline aquifers[J].International Journal of Greenhouse Gas Control,2011,5(5):1140-1148.DOI:10.1016/j.ijggc.2011.07.011.
[31] ONOJA M U,WILLIAMS J D O,VOSPER H,et al.Effect of sedimentary heterogeneities in the sealing formation on predictive analysis of geological CO2 storage[J].International Journal of Greenhouse Gas Control,2019,82:229-243.DOI:10.1016/j.ijggc.2019.01.013.
[32] LIU Bo,XU Jinpeng,LI Zhixiong,et al.Modeling of CO2 transport and pressure buildup in reservoirs during CO2 storage in saline aquifers: A case in Dongying depression in China[J].Environmental Earth Sciences,2018,77(5):158.DOI:10.1007/s12665-018-7341-6.
[33] ALTMANN J B,MüLLER B I R,MüLLER T M,et al.Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation[J].Geothermics,2014,52:195-205.DOI:10.1016/j.geothermics.2014.01.004.
[34] CHANG K W,SEGALL P.Injection-induced seismicity on basement faults including poroelastic stressing[J].Journal of Geophysical Research: Solid Earth,2016,121(4):2708-2726.DOI:10.1002/2015JB012060.
[35] SEGALL P,GRASSO J R,MOSSOP A.Poroelastic stressing and induced seismicity near the Lacq gas field,southwestern France[J].Journal of Geophysical Research: Solid Earth,1994,99(B8):15423-15438.
[36] ELLSWORTH W L.Injection-induced earthquakes[J].Science,2013,341(6142):1225942.DOI:10.1126/science.12259.
[37] BIOT M A.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12(2):155-164.DOI:10.1063/1.1712886.
[38] BIOT M A,WILLIS D G.The elastic coefficients of the theory of consolidation[J].Journal of Applied Mechanics,1957,24(4):594-601.DOI:10.1115/1.4011606.
[39] LOPATNIKOV S L,CHENG A H D.Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics[J].Journal of the Mechanics and Physics of Solids,2004,52(12):2801-2839.DOI:10.1016/j.jmps.2004.05.005.
[40] BAO Ting,BURGHARDT J,GUPTA V,et al.Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprocks[J].International Journal of Rock Mechanics and Mining Sciences,2021,146:104796.DOI:10.1016/j.ijrmms.2021.104796.
[41] CHANG K W,YOON H.3-D modeling of induced seismicity along multiple faults: Magnitude,rate,and location in a poroelasticity system[J].Journal of Geophysical Research: Solid Earth,2018,123(11):9866-9883.DOI:10.1029/2018JB016446.
[42] KING G C P,STEIN R S,LIN Jian.Static stress changes and the triggering of earthquakes[J].Bulletin of the Seismological Society of America,1994,84(3):935-953.DOI:10.1016/0148-9062(95)94484-2.
[43] ALTMANN J B,MüLLER T M,MüLLER B I R,et al.Poroelastic contribution to the reservoir stress path[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1104-1113.
[44] GOEBEL T H W,WEINGARTEN M,CHEN X,et al.The 2016 Mw 5.1 Fairview,Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells[J].Earth and Planetary Science Letters,2017,472:50-61.DOI:10.1016/j.epsl.2017.05.011.
[45] SEGALL P,LU S.Injection-induced seismicity: Poroelastic and earthquake nucleation effects[J].Journal of Geophysical Research:Solid Earth,2015,120(7):5082-5103.DOI:10.1002/2015JB012060.
[46] TODA S,LIN Jian,STEIN R S.Using the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure[J].Earth,Planets and Space,2011,63(7):725-730.DOI:10.5047/eps.2011.05.010.
[47] STEIN R S.The role of stress transfer in earthquake occurrence[J].Nature,1999,402(6762):605-609.DOI:10.1038/45144.
[48] VILARRASA V,OLIVELLA S,CARRERA J,et al.Long term impacts of cold CO2 injection on the caprock integrity[J].International Journal of Greenhouse Gas Control,2014,24:1-13.
[49] VILARRASA V,LALOUI L.Potential fracture propagation into the caprock induced by cold CO2 injection in normal faulting stress regimes[J].Geomechanics for Energy and the Environment,2015,2:22-31.DOI:10.1016/j.gete.2015.05.001.
[50] DE SIMONE S,CARRERA J,VILARRASA V.Superposition approach to understand triggering mechanisms of post-injection induced seismicity[J].Geothermics,2017,70:85-97.
[51] HERGERT T,HEIDBACH O,REITER K,et al.Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland,northern Switzerland[J].Solid Earth,2015,6(2):533-552.
[52] VILARRASA V,LALOUI L.Impacts of thermally induced stresses on fracture stability during geological storage of CO2[J].Energy Procedia,2016,86:411-419.DOI:10.1016/j.egypro.2016.01.042.
[53] 薛卉,舒彪,陈君洁,等.高温高压下超临界二氧化碳作用对花岗岩力学性质影响的试验研究[J].岩土力学,2022,43(2):377-384.DOI:10.16285/j.rsm.2021.1165.
[54] RIGBY S P,ALSAYAH A,SEELY R.Impact of exposure to supercritical carbon dioxide on reservoir caprocks and inter-layers during sequestration[J].Energies,2022,15(20):7538.
[55] AKBARI R,KHODAPANAH E,TABATABAEI-NEZHAD S A.Experimental investigation of CO2-brine-rock interactions in relation with CO2 sequestration in an Iranian oil reservoir[J].Greenhouse Gases:Science and Technology,2021,11(1):69-80.DOI:10.1002/ghg.2032.
[56] ANDRé L,AUDIGANE P,AZAROUAL M,et al.Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir,the Dogger aquifer(Paris Basin,France)[J].Energy Conversion and Management,2007,48(6):1782-1797.DOI:10.1016/j.enconman.2007.01.006.
[57] SEYYEDI M,MAHMUD H K B,VERRALL M,et al.Pore structure changes occur during CO2 injection into carbonate reservoirs[J].Scientific Reports,2020,10(1):3624.DOI:10.1038/s41598-020-60247-4.
[58] ESPINOZA D N,SANTAMARINA J C.Clay interaction with liquid and supercritical CO2: The relevance of electrical and capillary forces[J].International Journal of Greenhouse Gas Control,2012,10:351-362.DOI:10.1016/j.ijggc.2012.06.020.
[59] MOUZAKIS K M,NAVARRE-SITCHLER A K,ROTHER G,et al.Experimental study of porosity changes in shale caprocks exposed to CO2-saturated brines I: Evolution of mineralogy,pore connectivity,pore size distribution,and surface area[J].Environmental Engineering Science,2016,33(10):725-735.DOI:10.1089/ees.2015.0588.
[60] LUHMANN A J,TUTOLO B M,BAGLEY B C,et al.Permeability,porosity,and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine[J].Water Resources Research,2017,53(3):1908-1927.DOI:10.1002/2016WR019216.
[61] GARCIA-RIOS M,LUQUOT L,SOLER J M,et al.Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J].Chemical Geology,2015,414:95-108.DOI:10.1016/j.chemgeo.2015.09.005.
[62] BEMER E,LOMBARD J M.From injectivity to integrity studies of CO2 geological storage: Chemical alteration effects on carbonates petrophysical and geomechanical properties[J].Oil and Gas Science and Technology,2010,65(3):445-459.DOI:10.2516/ogst/2009028.
[63] SAMUELSON J,SPIERS C J.Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks[J].International Journal of Greenhouse Gas Control,2012,11:S78-S90.DOI:10.1016/j.ijggc.2012.09.018.
[64] RATHNAWEERA T D,RANJITH P G,PERERA M S A,et al.CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin:An experimental study[J].Materials Science and Engineering A,2015,641:123-137.DOI:10.1016/j.msea.2015.05.029.
[65] FIGUEIREDO B,TSANG C F,RUTQVIST J,et al.Coupled hydro-mechanical processes and fault reactivation induced by CO2 injection in a three-layer storage formation[J].International Journal of Greenhouse Gas Control,2015,39:432-448.
[66] PASSELèGUE F X,BRANTUT N,MITCHELL T M.Fault reactivation by fluid injection: Controls from stress state and injection rate[J].Geophysical Research Letters,2018,45(23):12837-12846.DOI:10.1029/2018GL080470.
[67] DE SIMONE S,VILARRASA V,CARRERA J,et al.Thermal coupling may control mechanical stability of geothermal reservoirs during cold water injection[J].Physics and Chemistry of the Earth,Parts A/B/C,2013,64:117-126.DOI: 10.1016/j.pce.2013.01.001.
[68] OYE V,AKER E,DALEY T M,et al.Microseismic monitoring and interpretation of injection data from the In Salah CO2 storage site(Krechba),Algeria[J].Energy Procedia,2013,37:4191-4198.DOI:10.1016/j.egypro.2013.06.321.
[69] VERDON J P,STORK A L,BISSELL R C,et al.Simulation of seismic events induced by CO2 injection at In Salah,Algeria[J].Earth and Planetary Science Letters,2015,426:118-129.DOI:10.1016/j.epsl.2015.06.029.
[70] PREISIG M,PRéVOST J H.Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah,Algeria[J].International Journal of Greenhouse Gas Control,2011,5(4):1055-1064.DOI:10.1016/j.ijggc.2010.12.006.
[71] WANG Lei,BAI Bing,LI Xiaochun,et al.An analytical model for assessing stability of pre-existing faults in caprock caused by fluid injection and extraction in a reservoir[J].Rock Mechanics and Rock Engineering,2016,49(7):2845-2863.DOI:10.1007/s00603-016-0933-0.
[72] GHEIBI S,HOLT R M,VILARRASA V.Effect of faults on stress path evolution during reservoir pressurization[J].International Journal of Greenhouse Gas Control,2017,63:412-430.
[73] MEGUERDIJIAN S,JHA B.Quantification of fault leakage dynamics based on leakage magnitude and dip angle[J].International Journal for Numerical and Analytical Methods in Geomechanics,2021,45(16):2303-2320.DOI:10.1002/nag.3267.
[74] TAGHIPOUR M,GHAFOORI M,LASHKARIPOUR G R,et al.A geomechanical evaluation of fault reactivation using analytical methods and numerical simulation[J].Rock Mechanics and Rock Engineering,2021,54(2):695-719.DOI:10.1007/s00603-020-02309-7.
[75] VILARRASA V,MAKHNENKO R,GHEIBI S.Geomechanical analysis of the influence of CO2 injection location on fault stability[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(6):805-818.DOI:10.1016/j.jrmge.2016.06.006.
[76] ELLIS B R,FITTS J P,BROMHAL G S,et al.Dissolution-driven permeability reduction of a fractured carbonate caprock[J].Environmental Engineering Science,2013,30(4):187-193.DOI:10.1089/ees.2012.0337.
[77] XIE S Y,SHAO J F,XU W Y.Influences of chemical degradation on mechanical behaviour of a limestone[J].International Journalof Rock Mechanics and Mining Sciences,2011,48(5):741-747.DOI:10.1016/j.ijrmms.2011.04.015.
[78] PLUYMAKERS A M H,SAMUELSON J E,NIEMEIJER A R,et al.Effects of temperature and CO2 on the frictional behavior of simulated anhydrite fault rock[J].Journal of Geophysical Research: Solid Earth,2014,119(12):8728-8747.DOI:10.1002/2014JB011575.
[79] MOORE D E.Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals[J].Journal of Geophysical Research,2004,109(B3):B03401.DOI:10.1029/2003JB002582.
[80] KIM K,MAKHNENKO R Y.Short- and long-term responses of reservoir rock induced by CO2 injection[J].Rock Mechanics and Rock Engineering,2022,55(11):6605-6625.DOI:10.1007/s00603-022-03032-1.
[81] NICOL A,CARNE R,GERSTENBERGER M,et al.Induced seismicity and its implications for CO2 storage risk[J].Energy Procedia,2011,4:3699-3706.
[82] KONSTANTINOVSKAYA E,RUTQVIST J,MALO M.CO2 storage and potential fault instability in the St.Lawrence Lowlands sedimentary basin(Quebec,Canada): Insights from coupled reservoir-geomechanical modeling[J].International Journal of Greenhouse Gas Control,2014,22:88-110.DOI:10.1016/j.ijggc.2013.12.008.
[83] GOODARZI S,SETTARI A,ZOBACK M D,et al.Optimization of a CO2 storage project based on thermal,geomechanical and induced fracturing effects[J].Journal of Petroleum Science and Engineering,2015,134:49-59.DOI:10.2118/139706-MS.
[84] ZHANG Zhihua,HUISINGH D.Carbon dioxide storage schemes: Technology,assessment and deployment[J].Journal of Cleaner Production,2017,142:1055-1064.DOI:10.1016/ j.jclepro.2016.06.199.