[1]禹海涛,张改,闫晓.CO2封存诱发近断层活化机制研究进展[J].华侨大学学报(自然科学版),2024,45(2):136-149.[doi:10.11830/ISSN.1000-5013.202403004]
 YU Haitao,ZHANG Gai,YAN Xiao.Research Progress on Mechanism of Near-Fault Reactivation Induced by CO2 Geological Storage[J].Journal of Huaqiao University(Natural Science),2024,45(2):136-149.[doi:10.11830/ISSN.1000-5013.202403004]
点击复制

CO2封存诱发近断层活化机制研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第2期
页码:
136-149
栏目:
出版日期:
2024-03-20

文章信息/Info

Title:
Research Progress on Mechanism of Near-Fault Reactivation Induced by CO2 Geological Storage
文章编号:
1000-5013(2024)02-0136-14
作者:
禹海涛12 张改2 闫晓2
1. 同济大学 土木工程防灾减灾全国重点实验室, 上海 200092;2. 同济大学 地下建筑与工程系, 上海 200092
Author(s):
YU Haitao12 ZHANG Gai2 YAN Xiao2
1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
关键词:
碳封存 断层活化 孔隙流体压力 非等温效应 地球化学反应
Keywords:
carbon storage fault reactivation pore pressure non-isothermal effect geochemical reactions
分类号:
X78;P315.728
DOI:
10.11830/ISSN.1000-5013.202403004
文献标志码:
A
摘要:
文中梳理了CO2地质封存诱发地震活动的典型案例和总体进展,并结合注入诱发断层失稳理论,系统阐述热-流-力-化多场耦合作用下的CO2封存诱发近断层活化机理,探讨不同物理过程对断层活化的关键影响因素,指出目前研究存在的问题和亟待突破的研究方向。研究结果表明:CO2地质封存诱发地震活动与孔隙压力扩散、非等温效应及地球化学反应等物理过程紧密相关;相较于注水活动,CO2注入触发了涉及多相流动状态、焦耳-汤姆逊效应、CO2溶解放热及CO2-地层盐水-岩体化学作用等一系列复杂多物理场耦合过程;实际断层活化及剪切破坏的发生是这些过程协同作用的结果,并受到地层应力状态和断层属性的控制,以及注入策略和注入位置的影响。今后研究工作需要在基础理论研究和应用实践层面全面考虑热-流-力-化多场耦合效应,加强封存场地地质构造勘查,并发展多模式的流体注入策略,这对理解CO2注入诱发近断层活化机制进而实现地震活动的精确预测至关重要。
Abstract:
The typical cases of seismicity monitored in CO2 geological storage(CGS)projects are summarized. Combining the theory of injection-induced fault instability, the mechanism of near-fault reactivation under the effect of thermo-hydro-mechanical-chemical(THMC)coupling during the storage process is investigated. The key factors of various physical processes influencing fault reactivation are discussed, the current research challenges and perspectives are also pointed out. Research results indicate that fault reactivation induced by CO2 storage is related with pore pressure perturbation, non-isothermal effect and geochemical reactions; compared with water-injection activities, the characteristics of CO2 injection includes multiphase flow, the Joule-Thomson effect, dissolution heat release, and CO2-brine-rock interaction; The induced fault reactivation is the result of the synergistic effects of these processes, and is controlled by the geo-stress and fault properties, is also influenced by injection strategy and location. Future research efforts should pay more attention on the THMC coupling, the exploration of geological characteristics, and the development of multi-mode CO2 injection strategies at both the fundamental theoretical research and practical application. This foundational re-research is essential to understand the mechanisms of near-fault reactivation induced by CO2 injection, and to reliably assess seismic activity.

参考文献/References:

[1] 李琦,刘桂臻,李小春,等.多维度视角下CO2捕集利用与封存技术的代际演变与预设[J].工程科学与技术,2022,54(1):157-166.DOI:10.15961/j.jsuese.202100765.
[2] JAYASEKARA D W,RANJITH P G,WANNIARACHCHI W A M,et al.Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study[J].The Journal of Supercritical Fluids,2020,161:104819.DOI:10.1016/j.supflu.2020.104819.
[3] FENG Yongcun,ZHANG Shuai,MA Chengyun,et al.The role of geomechanics for geological carbon storage[J].Gondwana Research,2023,124:100-123.DOI:10.1016/j.gr.2023.07.003.
[4] PETER A,YANG Dongmin,ESHIET K I-I I,et al.A review of the studies on CO2-brine-rock interaction in geological storage process[J].Geosciences,2022,12(4):168.DOI:10.3390/geosciences12040168.
[5] CHENG Y X,LIU W,XU T,et al.Seismicity induced by geological CO2 storage: A review[J].Earth-Science Reviews,2023,239:104369.
[6] 魏晓琛,李琦,邢会林,等.地下流体注入诱发地震机理及其对CO2地下封存工程的启示[J].地球科学进展,2014,29(11):1226-1241.DOI: 10.11867/j.issn.1001-8166.2014.11.1226.
[7] 刘贺娟,童荣琛,侯正猛,等.地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J].工程科学与技术,2022,54(1):83-96.DOI: 10.15961/j.jsuese.202100612.
[8] WHITE J A,FOXALL W.Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges[J].International Journal of Greenhouse Gas Control,2016,49:413-424.DOI:10.1016/j.ijggc.2016.03.021.
[9] CHIQUET P,THIBEAU S,LESCANNE M,et al.Geochemical assessment of the injection of CO2 into rousse depleted gas reservoir(Part Ⅱ): Geochemical impact of the CO2 injection[J].Energy Procedia,2013,37:6383-6394.DOI:10.1016/j.egypro.2013.06.568.
[10] Ting Bao,Jeff Burghardt,Varun Gupta,et al.Impact of time-dependent deformation on geomechanical risk for geologic carbon storage[J].International Journal of Rock Mechanics and Mining Sciences,2021,148:104940.
[11] VILARRASA V,RINALDI A P,RUTQVIST J.Long-term thermal effects on injectivity evolution during CO2 storage[J].International Journal of Greenhouse Gas Control,2017,64:314-322.
[12] AKONO A T,DRUHAN J L,DáVILA G,et al.A review of geochemical-mechanical impacts in geological carbon storage reservoirs[J].Greenhouse Gases: Science and Technology,2019,9(3):474-504.DOI:10.1002/ghg.1870.
[13] JHA B,JUANES R.Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering[J].Water Resources Research,2014,50(5):3776-3808.DOI:10.1002/2013WR015175.
[14] VILARRASA V,RUTQVIST J.Thermal effects on geologic carbon storage[J].Earth-Science Reviews,2017,165:245-256.DOI:10.1016/j.earscirev.2016.12.011.
[15] KUANG Nianjie,ZHOU Junping,XIAN Xuefu,et al.Geomechanical risk and mechanism analysis of CO2 sequestration in unconventional coal seams and shale gas reservoirs[J].Rock Mechanics Bulletin,2023,2(4):100079.DOI:10.1016/j.rockmb.2023.100079.
[16] VILARRASA V,CARRERA J,OLIVELLA S,et al.Induced seismicity in geologic carbon storage[J].Solid Earth,2019,10(3):871-892.DOI:10.5194/se-2018-129.
[17] CEBRY S B L,KE C Y,MC LASKEY G C.The role of background stress state in fluid-induced aseismic slip and dynamic rupture on a 3-m laboratory fault[J].Journal of Geophysical Research: Solid Earth,2022,127(8):e2022JB024371.
[18] VILARRASA V.The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage[J].Geofluids,2016,16(5):941-953.DOI:10.1111/gfl.12197.
[19] 张建勇,崔振东,周健,等.流体注入工程诱发断层活化的风险评估方法[J].天然气工业,2018,38(8):33-40.DOI:10.3787/j.issn.1000-0976.2018.08.005.
[20] 周银邦,王锐,何应付,等.咸水层CO2地质封存典型案例分析及对比[J].油气地质与采收率,2023,30(2):162-167.DOI:10.13673/j.cnki.cn37-1359/te.202201028.
[21] 周银邦,王锐,程传捷,等.阿尔及利亚In Salah油田CO2地质封存示范工程的启示[J].地球科学与环境学报,2023,45(6):1368-1379.DOI:10.19814/j.jese.2023.03051.
[22] FINLEY R J.An overview of the Illinois Basin-Decatur Project[J].Greenhouse Gases: Science and Technology,2014,4(5):571-579.DOI:10.1002/ghg.1433.
[23] 干微.中国东北深源地震与美国德州注入诱发地震的研究及启示[D].北京:中国地质大学(北京),2015.
[24] SLAKER B,WESTMAN E,LUXBACHER K,et al.Application of double-difference seismic tomography to carbon sequestration monitoring at the Aneth Oil Field,Utah[J].Minerals,2013,3(4):352-366.DOI:10.3390/min3040352.
[25] PAYRE X,MAISONS C,MARBLé A,et al.Analysis of the passive seismic monitoring performance at the Rousse CO2 storage demonstration pilot[J].Energy Procedia,2014,63:4339-4357.DOI:10.1016/j.egypro.2014.11.469.
[26] BIRKHOLZER J T,ZHOU Quanlin,TSANG Chinfu.Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems[J].International Journal of Greenhouse Gas Control,2009,3(2):181-194.DOI:10.1016/j.ijggc.2008.08.002.
[27] ZHOU Quanlin,BIRKHOLZER J T.On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2[J].Greenhouse Gases: Science and Technology,2011,1(1):11-20.DOI:10.1002/ghg3.1.
[28] VILARRASA V,RAMíREZ C J,OLIVELLA S.Two-phase flow effects on the CO2 injection pressure evolution and implications for the caprock geomechanical stability[J].E3S Web of Conferences,2016,9:04007.DOI:10.1051/e3sconf/20160904007.
[29] VILARRASA V,CARRERA J,BOLSTER D,et al.Semianalytical solution for CO2 plume shape and pressure evolution during CO2 injection in deep saline formations[J].Transport in Porous Media,2013,97(1):43-65.
[30] OKWEN R T,STEWART M T,CUNNINGHAM J A.Temporal variations in near-wellbore pressures during CO2 injection in saline aquifers[J].International Journal of Greenhouse Gas Control,2011,5(5):1140-1148.DOI:10.1016/j.ijggc.2011.07.011.
[31] ONOJA M U,WILLIAMS J D O,VOSPER H,et al.Effect of sedimentary heterogeneities in the sealing formation on predictive analysis of geological CO2 storage[J].International Journal of Greenhouse Gas Control,2019,82:229-243.DOI:10.1016/j.ijggc.2019.01.013.
[32] LIU Bo,XU Jinpeng,LI Zhixiong,et al.Modeling of CO2 transport and pressure buildup in reservoirs during CO2 storage in saline aquifers: A case in Dongying depression in China[J].Environmental Earth Sciences,2018,77(5):158.DOI:10.1007/s12665-018-7341-6.
[33] ALTMANN J B,MüLLER B I R,MüLLER T M,et al.Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation[J].Geothermics,2014,52:195-205.DOI:10.1016/j.geothermics.2014.01.004.
[34] CHANG K W,SEGALL P.Injection-induced seismicity on basement faults including poroelastic stressing[J].Journal of Geophysical Research: Solid Earth,2016,121(4):2708-2726.DOI:10.1002/2015JB012060.
[35] SEGALL P,GRASSO J R,MOSSOP A.Poroelastic stressing and induced seismicity near the Lacq gas field,southwestern France[J].Journal of Geophysical Research: Solid Earth,1994,99(B8):15423-15438.
[36] ELLSWORTH W L.Injection-induced earthquakes[J].Science,2013,341(6142):1225942.DOI:10.1126/science.12259.
[37] BIOT M A.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12(2):155-164.DOI:10.1063/1.1712886.
[38] BIOT M A,WILLIS D G.The elastic coefficients of the theory of consolidation[J].Journal of Applied Mechanics,1957,24(4):594-601.DOI:10.1115/1.4011606.
[39] LOPATNIKOV S L,CHENG A H D.Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics[J].Journal of the Mechanics and Physics of Solids,2004,52(12):2801-2839.DOI:10.1016/j.jmps.2004.05.005.
[40] BAO Ting,BURGHARDT J,GUPTA V,et al.Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprocks[J].International Journal of Rock Mechanics and Mining Sciences,2021,146:104796.DOI:10.1016/j.ijrmms.2021.104796.
[41] CHANG K W,YOON H.3-D modeling of induced seismicity along multiple faults: Magnitude,rate,and location in a poroelasticity system[J].Journal of Geophysical Research: Solid Earth,2018,123(11):9866-9883.DOI:10.1029/2018JB016446.
[42] KING G C P,STEIN R S,LIN Jian.Static stress changes and the triggering of earthquakes[J].Bulletin of the Seismological Society of America,1994,84(3):935-953.DOI:10.1016/0148-9062(95)94484-2.
[43] ALTMANN J B,MüLLER T M,MüLLER B I R,et al.Poroelastic contribution to the reservoir stress path[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1104-1113.
[44] GOEBEL T H W,WEINGARTEN M,CHEN X,et al.The 2016 Mw 5.1 Fairview,Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells[J].Earth and Planetary Science Letters,2017,472:50-61.DOI:10.1016/j.epsl.2017.05.011.
[45] SEGALL P,LU S.Injection-induced seismicity: Poroelastic and earthquake nucleation effects[J].Journal of Geophysical Research:Solid Earth,2015,120(7):5082-5103.DOI:10.1002/2015JB012060.
[46] TODA S,LIN Jian,STEIN R S.Using the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure[J].Earth,Planets and Space,2011,63(7):725-730.DOI:10.5047/eps.2011.05.010.
[47] STEIN R S.The role of stress transfer in earthquake occurrence[J].Nature,1999,402(6762):605-609.DOI:10.1038/45144.
[48] VILARRASA V,OLIVELLA S,CARRERA J,et al.Long term impacts of cold CO2 injection on the caprock integrity[J].International Journal of Greenhouse Gas Control,2014,24:1-13.
[49] VILARRASA V,LALOUI L.Potential fracture propagation into the caprock induced by cold CO2 injection in normal faulting stress regimes[J].Geomechanics for Energy and the Environment,2015,2:22-31.DOI:10.1016/j.gete.2015.05.001.
[50] DE SIMONE S,CARRERA J,VILARRASA V.Superposition approach to understand triggering mechanisms of post-injection induced seismicity[J].Geothermics,2017,70:85-97.
[51] HERGERT T,HEIDBACH O,REITER K,et al.Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland,northern Switzerland[J].Solid Earth,2015,6(2):533-552.
[52] VILARRASA V,LALOUI L.Impacts of thermally induced stresses on fracture stability during geological storage of CO2[J].Energy Procedia,2016,86:411-419.DOI:10.1016/j.egypro.2016.01.042.
[53] 薛卉,舒彪,陈君洁,等.高温高压下超临界二氧化碳作用对花岗岩力学性质影响的试验研究[J].岩土力学,2022,43(2):377-384.DOI:10.16285/j.rsm.2021.1165.
[54] RIGBY S P,ALSAYAH A,SEELY R.Impact of exposure to supercritical carbon dioxide on reservoir caprocks and inter-layers during sequestration[J].Energies,2022,15(20):7538.
[55] AKBARI R,KHODAPANAH E,TABATABAEI-NEZHAD S A.Experimental investigation of CO2-brine-rock interactions in relation with CO2 sequestration in an Iranian oil reservoir[J].Greenhouse Gases:Science and Technology,2021,11(1):69-80.DOI:10.1002/ghg.2032.
[56] ANDRé L,AUDIGANE P,AZAROUAL M,et al.Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir,the Dogger aquifer(Paris Basin,France)[J].Energy Conversion and Management,2007,48(6):1782-1797.DOI:10.1016/j.enconman.2007.01.006.
[57] SEYYEDI M,MAHMUD H K B,VERRALL M,et al.Pore structure changes occur during CO2 injection into carbonate reservoirs[J].Scientific Reports,2020,10(1):3624.DOI:10.1038/s41598-020-60247-4.
[58] ESPINOZA D N,SANTAMARINA J C.Clay interaction with liquid and supercritical CO2: The relevance of electrical and capillary forces[J].International Journal of Greenhouse Gas Control,2012,10:351-362.DOI:10.1016/j.ijggc.2012.06.020.
[59] MOUZAKIS K M,NAVARRE-SITCHLER A K,ROTHER G,et al.Experimental study of porosity changes in shale caprocks exposed to CO2-saturated brines I: Evolution of mineralogy,pore connectivity,pore size distribution,and surface area[J].Environmental Engineering Science,2016,33(10):725-735.DOI:10.1089/ees.2015.0588.
[60] LUHMANN A J,TUTOLO B M,BAGLEY B C,et al.Permeability,porosity,and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine[J].Water Resources Research,2017,53(3):1908-1927.DOI:10.1002/2016WR019216.
[61] GARCIA-RIOS M,LUQUOT L,SOLER J M,et al.Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J].Chemical Geology,2015,414:95-108.DOI:10.1016/j.chemgeo.2015.09.005.
[62] BEMER E,LOMBARD J M.From injectivity to integrity studies of CO2 geological storage: Chemical alteration effects on carbonates petrophysical and geomechanical properties[J].Oil and Gas Science and Technology,2010,65(3):445-459.DOI:10.2516/ogst/2009028.
[63] SAMUELSON J,SPIERS C J.Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks[J].International Journal of Greenhouse Gas Control,2012,11:S78-S90.DOI:10.1016/j.ijggc.2012.09.018.
[64] RATHNAWEERA T D,RANJITH P G,PERERA M S A,et al.CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin:An experimental study[J].Materials Science and Engineering A,2015,641:123-137.DOI:10.1016/j.msea.2015.05.029.
[65] FIGUEIREDO B,TSANG C F,RUTQVIST J,et al.Coupled hydro-mechanical processes and fault reactivation induced by CO2 injection in a three-layer storage formation[J].International Journal of Greenhouse Gas Control,2015,39:432-448.
[66] PASSELèGUE F X,BRANTUT N,MITCHELL T M.Fault reactivation by fluid injection: Controls from stress state and injection rate[J].Geophysical Research Letters,2018,45(23):12837-12846.DOI:10.1029/2018GL080470.
[67] DE SIMONE S,VILARRASA V,CARRERA J,et al.Thermal coupling may control mechanical stability of geothermal reservoirs during cold water injection[J].Physics and Chemistry of the Earth,Parts A/B/C,2013,64:117-126.DOI: 10.1016/j.pce.2013.01.001.
[68] OYE V,AKER E,DALEY T M,et al.Microseismic monitoring and interpretation of injection data from the In Salah CO2 storage site(Krechba),Algeria[J].Energy Procedia,2013,37:4191-4198.DOI:10.1016/j.egypro.2013.06.321.
[69] VERDON J P,STORK A L,BISSELL R C,et al.Simulation of seismic events induced by CO2 injection at In Salah,Algeria[J].Earth and Planetary Science Letters,2015,426:118-129.DOI:10.1016/j.epsl.2015.06.029.
[70] PREISIG M,PRéVOST J H.Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah,Algeria[J].International Journal of Greenhouse Gas Control,2011,5(4):1055-1064.DOI:10.1016/j.ijggc.2010.12.006.
[71] WANG Lei,BAI Bing,LI Xiaochun,et al.An analytical model for assessing stability of pre-existing faults in caprock caused by fluid injection and extraction in a reservoir[J].Rock Mechanics and Rock Engineering,2016,49(7):2845-2863.DOI:10.1007/s00603-016-0933-0.
[72] GHEIBI S,HOLT R M,VILARRASA V.Effect of faults on stress path evolution during reservoir pressurization[J].International Journal of Greenhouse Gas Control,2017,63:412-430.
[73] MEGUERDIJIAN S,JHA B.Quantification of fault leakage dynamics based on leakage magnitude and dip angle[J].International Journal for Numerical and Analytical Methods in Geomechanics,2021,45(16):2303-2320.DOI:10.1002/nag.3267.
[74] TAGHIPOUR M,GHAFOORI M,LASHKARIPOUR G R,et al.A geomechanical evaluation of fault reactivation using analytical methods and numerical simulation[J].Rock Mechanics and Rock Engineering,2021,54(2):695-719.DOI:10.1007/s00603-020-02309-7.
[75] VILARRASA V,MAKHNENKO R,GHEIBI S.Geomechanical analysis of the influence of CO2 injection location on fault stability[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(6):805-818.DOI:10.1016/j.jrmge.2016.06.006.
[76] ELLIS B R,FITTS J P,BROMHAL G S,et al.Dissolution-driven permeability reduction of a fractured carbonate caprock[J].Environmental Engineering Science,2013,30(4):187-193.DOI:10.1089/ees.2012.0337.
[77] XIE S Y,SHAO J F,XU W Y.Influences of chemical degradation on mechanical behaviour of a limestone[J].International Journalof Rock Mechanics and Mining Sciences,2011,48(5):741-747.DOI:10.1016/j.ijrmms.2011.04.015.
[78] PLUYMAKERS A M H,SAMUELSON J E,NIEMEIJER A R,et al.Effects of temperature and CO2 on the frictional behavior of simulated anhydrite fault rock[J].Journal of Geophysical Research: Solid Earth,2014,119(12):8728-8747.DOI:10.1002/2014JB011575.
[79] MOORE D E.Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals[J].Journal of Geophysical Research,2004,109(B3):B03401.DOI:10.1029/2003JB002582.
[80] KIM K,MAKHNENKO R Y.Short- and long-term responses of reservoir rock induced by CO2 injection[J].Rock Mechanics and Rock Engineering,2022,55(11):6605-6625.DOI:10.1007/s00603-022-03032-1.
[81] NICOL A,CARNE R,GERSTENBERGER M,et al.Induced seismicity and its implications for CO2 storage risk[J].Energy Procedia,2011,4:3699-3706.
[82] KONSTANTINOVSKAYA E,RUTQVIST J,MALO M.CO2 storage and potential fault instability in the St.Lawrence Lowlands sedimentary basin(Quebec,Canada): Insights from coupled reservoir-geomechanical modeling[J].International Journal of Greenhouse Gas Control,2014,22:88-110.DOI:10.1016/j.ijggc.2013.12.008.
[83] GOODARZI S,SETTARI A,ZOBACK M D,et al.Optimization of a CO2 storage project based on thermal,geomechanical and induced fracturing effects[J].Journal of Petroleum Science and Engineering,2015,134:49-59.DOI:10.2118/139706-MS.
[84] ZHANG Zhihua,HUISINGH D.Carbon dioxide storage schemes: Technology,assessment and deployment[J].Journal of Cleaner Production,2017,142:1055-1064.DOI:10.1016/ j.jclepro.2016.06.199.

备注/Memo

备注/Memo:
收稿日期: 2024-03-01
通信作者: 闫晓(1994-),女,博士后,主要从事CO2地质封存诱发地震的研究。E-mail:xiao_yan@tongji.edu.cn。
基金项目: 国家重点研发计划项目(政府间国际科技创新合作)(2022YFE0128400); 国家自然科学基金青年基金资助项目(42307209)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2024-03-20