[1]赵志远,郁勋剑,黄永刚,等.顾及街景信息的城市交通违法行为影响因素分析[J].华侨大学学报(自然科学版),2023,44(6):759-768.[doi:10.11830/ISSN.1000-5013.202307002]
 ZHAO Zhiyuan,YU Xunjian,HUANG Yonggang,et al.Analysis of Influencing Factors of Urban Traffic Violations Considering Street View Information[J].Journal of Huaqiao University(Natural Science),2023,44(6):759-768.[doi:10.11830/ISSN.1000-5013.202307002]
点击复制

顾及街景信息的城市交通违法行为影响因素分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第6期
页码:
759-768
栏目:
出版日期:
2023-11-20

文章信息/Info

Title:
Analysis of Influencing Factors of Urban Traffic Violations Considering Street View Information
文章编号:
1000-5013(2023)06-0759-10
作者:
赵志远123 郁勋剑12 黄永刚12 吴升123
1. 福州大学 数字中国研究院(福建), 福建 福州 350108;2. 福州大学 空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350002;3. 福建省数字经济联盟, 福建 福州 350003
Author(s):
ZHAO Zhiyuan123 YU Xunjian12 HUANG Yonggang12 WU Sheng123
1. Academy of Digital China(Fujian), Fuzhou University, Fuzhou 350108, China; 2. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350002, China; 3. The Digital Economy Alliance of Fujian Pro
关键词:
城市交通违法行为 地理环境特征指标体系 街景数据 影响因素
Keywords:
urban traffic violations geographical environment characteristic indicator system street view data influencing factors
分类号:
TP311.13;D922.14
DOI:
10.11830/ISSN.1000-5013.202307002
文献标志码:
A
摘要:
以2017年福州市交通违法数据为例,综合利用街景、路网和兴趣点等数据,构建三类地理环境特征指标体系,利用多元线性回归、岭回归模型和地理探测器,定量分析地理环境特征指标与城市交通违法行为之间的关系。结果表明:绿地广场用地、商服设施用地、交通服务设施密度、人车空间配比、道路拥挤指数与机动车交通违法行为关系密切,解释程度超过50%;居住用地、交叉口密度、公共管理与公共服务用地与非机动车交通违法行为关系密切,解释程度超过30%;公共管理与公共服务用地对两种典型交通违法行为的影响均较大,而土地利用熵、交叉口密度对行人和非机动车违反交通信号灯通行违法行为的影响更强;地理环境特征指标对不同交通违法行为解释程度的差异随着违法区域和违法类型等属性的变化而变化;街景数据所反映的局部空间环境因素提高了对机动车违法行为的解释程度,但对非机动车违法行为不明显。
Abstract:
Taking the traffic violation data of Fuzhou City in 2017 as an example, three types of geographical environment characteristic indicator systems are constructed by comprehensively utilizing data such as data of street view, data of road network, and data of interest points. Multiple linear regression, ridge regression models, and geographic detectors are used to quantitatively analyze the relationship between geographical environment characteristic indicators and urban traffic violations. The results show that there is a close relationship between the land of green squares, the land of commercial service facilities, traffic service facility density, pedestrian and vehicle space ratio, road congestion index, and motor vehicle traffic violations, with an explana-tion degree exceeding 50%. Residential land, intersection density, public management and public service land are closely related to non-motor vehicle traffic violations, with an explanation degree exceeding 30%. Public management and public service land have a significant impact on both typical traffic violations which violating traffic lights for passage, while land use entropy and intersection density has a stronger impact on illegal behavior of pedestrians and non motorized vehicles violating traffic lights. The differences in the degree of interpretation of different traffic violations by geographical environmental characteristic indicators vary with the changes in attributes such as illegal areas and types of violations. The local spatial environmental factors reflected in data of street view have increased the degree of explanation for motor vehicle violations, but are not significant for non-motor vehicle violations.

参考文献/References:

[1] 郑依玲,谢波,南贤淑,等.城市土地利用对交通事故的影响因素与作用机制研究: 以武汉市为例[J].现代城市研究,2020(2):42-49.DOI:10.3969/j.issn.1009-6000.2020.02.006.
[2] RISSANEN R,IFVER J,HASSELBERG M,et al.Quality of life following road traffic injury: The impact of age and gender[J].Quality of Life Research,2020,29(6):1587-1596.DOI:10.1007/s11136-020-02427-3.
[3] CHEN Peng,SHEN Qing.Built environment effects on cyclist injury severity in automobile-involved bicycle crashes[J].Accident Analysis and Prevention,2016,86(11):239-246.DOI:10.1016/j.aap.2015.11.002.
[4] 丁微,徐铖铖,刘攀.用地组合形态划分与交通安全影响因素分析[J].东南大学学报(自然科学版),2017,47(5):1074-1078.DOI:10.3969/j.issn.1001-0505.2017.05.037.
[5] 周悦,付川云,江欣国,等.考虑空间效应的出租车超速行为道路因素分析[J].中国安全科学学报,2021,31(3):162-170.DOI:10.16265/j.cnki.issn1003-3033.2021.03.023.
[6] PIRDAVANI A,BELLEMANS T,BRIJS T,et al.Application of geographically weighted regression technique in spatial analysis of fatal and injury crashes[J].Journal of Transportation Engineering,2014,140(8):04014032.DOI:10.1061/(ASCE)TE.1943-5436.0000680.
[7] 王劲峰,徐成东.地理探测器: 原理与展望[J].地理学报,2017,72(1):116-134.DOI:10.11821/dlxb201701010.
[8] 徐勇,郭振东,郑志威,等.运用地理探测器研究京津冀城市群PM2.5浓度变化及影响因素[J].环境科学研究,2023,36(4):649-659.DOI:10.13198/j.issn.1001-6929.2023.01.01.
[9] 郝秀清,史宇鹏,张雪娜.县城交通事故的分布及其影响因素地理探测[J].交通工程,2019,19(6):53-60.DOI:10.13986/j.cnki.jote.2019.06.011.
[10] DAI Liangyang,ZHENG Chenglong,DONG Zekai,et al.Analyzing the correlation between visual space and residents’ psychology in Wuhan, China using street-view images and deep-learning technique[J].City and Environment Interactions,2021,11:100069.DOI:10.1016/J.CACINT.2021.100069.
[11] CHEN Hongyun,FABREGAS A,LIN P S.Landscaping of highway medians and roadway safety at unsignalized intersections[J].Accident Analysis and Prevention,2016,90:63-72.DOI:10.1016/j.aap.2016.02.006.
[12] 李良,何江华,张恬,等.高速公路景观对驾驶人操作表现和心理健康的影响[J].南方建筑,2018,38(3):30-33.DOI:10.3969/j.issn.1000-0232.2018.03.030.
[13] 鲁岳,符锌砂.基于街景图像的城市景观与交通安全分析[J].华南理工大学学报(自然科学版),2021,49(10):22-30.DOI:10.12141/j.issn.1000-565X.200733.
[14] 贺捷.TOD理念下步行化城市公共空间塑造: 以厦门市马銮湾南岸片区城市设计为例[J].城市规划学刊,2018(增刊1):89-93.DOI:10.16361/j.upf.201807015.
[15] 赵志远,黄永刚,吴升.基于时空热点分析的城市交通违法行为特征识别方法[J].地球信息科学学报,2022,24(7):1312-1325.DOI:10.12082/dqxxkx.2022.210599.
[16] 李昊东.基于全卷积网络改进的图像语义分割应用研究[D].南京:南京邮电大学,2019.
[17] 方旭,王光辉,杨化超.结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类[J].激光与光电子学进展,2018,55(2):446-454.DOI:10.3788/LOP55.022802.
[18] YAO Yao,LIANG Zhaotang,YUAN Zehao,et al.A human-machine adversarial scoring framework for urban perception assessment using street-view images[J].International Journal of Geographical Information Science,2019,33(12):2363-2384.DOI:10.1080/13658816.2019.1643024.
[19] 张帆,张永勇,陈俊旭.多种机器学习模型对不同洪水类型特征指标模拟效果评估[J].地理科学进展,2022,41(7):1239-1250.DOI:10.18306/dlkxjz.2022.07.008.
[20] 张金茜,巩杰,柳冬青.地理探测器方法下甘肃白龙江流域景观破碎化与驱动因子分析[J].地理科学,2018,38(8):1370-1378.DOI:10.13249/j.cnki.sgs.2018.08.020.
[21] 甄佳宁,蒋侠朋,赵德梅.利用Sentinel-2影像超分辨率重建的红树林冠层氮含量反演[J].遥感学报,2022,26(6):1206-1219.DOI:10.11834/jrs.20221461.
[22] WANG Jinfeng,LI Xinhu,CHRISTAKOS G,et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J].International Journal of Geographical Information Science,2010,24:107-127.DOI:10.1080/13658810802443457.
[23] 肖晔,赵林,乔路明,等.京津冀文化艺术产业空间格局演变及其影响因素[J].地理研究,2021,40(6):1768-1784.DOI:1011821/dlyj020200663.
[24] WANG Jinfeng,HU Yi.Environmental health risk detection with GeogDetector[J].Environmental Modelling and Software,2012,33:114-115.DOI:10.1016/j.envsoft.2012.01.015.
[25] 杨丰硕,杨晓梅,王志华,等.江西省典型县域经济差异影响因子地理探测研究[J].地球信息科学学报,2018,20(1):79-88.DOI:10.12082/dqxxkx.2018.170375.
[26] 苍宏宇,谭宗颖.国内外信息检索研究热点分析: 基于Z-Score标准化的词频[J].图书馆建设,2009(1):93-98.
[27] 卢艺.信号交叉口右转机动车与非机动车交通冲突分析[D].北京:中国人民公安大学,2021.
[28] 杨军,郭子渝.城市道路交通违法行为影响因素分析[J].西部交通科技,2020(9):142-145.DOI:10.13282/j.cnki.wccst.2020.09.039.
[29] 杨杰,邬群勇.福州市交通违法行为时空特征分析[J].测绘地理信息,2020,45(4):11-15.DOI:10.14188/j.2095-6045.2018300.
[30] 罗义学,杜岩,黎美清.机动车驾驶人交通违法行为相关因素分析[J].广西医科大学学报,2010,27(6):956-959.DOI:10.3969/j.issn.1005-930X.2010.06.062.

备注/Memo

备注/Memo:
收稿日期: 2023-07-04
通信作者: 赵志远(1989-),男,副研究员,主要从事时空大数据分析与挖掘的研究。E-mail:zyzhao@fzu.edu.cn.
基金项目: 国家自然科学基金资助项目(42201500); 福建省中青年教师教育科研项目(JAT210012); 空间数据挖掘与信息共享教育部重点实验室开放基金资助项目(2022LSDMIS03)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2023-11-20