参考文献/References:
[1] 舒文华,欧阳惠卿.自动扶梯乘客行为智能感知和自主安全管理技术标准探讨[J].质量与标准化,2021,354(10):39-43.DOI:10.3969/j.issn.2095-0918.2021.10.015.
[2] 蒋儒浩.自动扶梯综合性能检测仪研制[D].合肥:合肥工业大学,2019.
[3] 付春平.自动扶梯几起安全事故的共性分析与探讨[J].科技与创新,2023,217(1):82-84,89.DOI:10.15913/j.cnki.kjycx.2023.01.023.
[4] 张栓柱.基于事故树的商场电梯事故分析[J].消防界(电子版),2022,8(21):21-23.DOI:10.16859/j.cnki.cn12-9204/tu.2022.21.040.
[5] 解云蕾.自动扶梯安全探讨[J].中国科技信息,2022(3):64-66.DOI:10.3969/j.issn.1001-8972.2022.03.021.
[6] CHEN Yucheng,TIAN Yingli,HE Mingyi.Monocular human pose estimation: A survey of deep learning-based methods[J].Computer Vision and Image Understanding,2020,192:102897.DOI:10.1016/j.cviu.2019.102897.
[7] ZHENG Ce,WU Wenhan,CHEN Chen,et al.Deep learning-based human pose estimation: A survey[EB/OL].(2023-07-03)[2023-09-19] .https://doi.org/10.48550/arXiv.2012.13392.
[8] 汤一平,杨冠宝,胡飞虎,等.基于计算机视觉的自动扶梯节能系统[J].计算机测量与控制,2011,19(7):1659-1661,1677.DOI:10.16526/j.cnki.11-4762/tp.2011.07.052.
[9] CAO Zhe,HIDALGO G,SIMON T,et al.OpenPose: Realtime multi-person 2D pose estimation using part affinity fields[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(1):172-186.DOI:10.1109/TPAMI.2019.2929257.
[10] CHENG B,XIAO Bin,WANG Jingdong,et al.HigherHRNet: Scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:5386-5395.DOI:10.48550/arXiv.1908.10357.
[11] NEFF C,SHETH A,FURGURSON S,et al.Efficienthrnet: Efficient scaling for lightweight high-resolution multi-person pose estimation[EB/OL].(2020-12-30)[2023-09-19] .https://doi.org/10.48550/arXiv.2007.08090.
[12] 田联房,吴啟超,杜启亮,等.基于人体骨架序列的手扶电梯乘客异常行为识别[J].华南理工大学学报(自然科学版),2019,47(4):10-19.DOI:10.12141/j.issn.1000-565X.180186.
[13] FANG Haoshu,XIE Shuqin,LU Cewu,et al.RMPE: Regional multi-person pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice:IEEE Press,2017:2334-2343.DOI:10.48550/arXiv.1612.00137.
[14] SUN Ke,XIAO Bin,LIU Dong,et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:5693-5703.DOI:10.1109/CVPR.2019.00584.
[15] CHEN Yilun,WANG Zhicheng,PENG Yuxiang,et al.Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:7103-7112.DOI:10.48550/arXiv.1711.07319.
[16] ASGARY S,MOTAZEDIAN H R,PARIROKH M,et al.KAPAO: A MEMS-based natural guide star adaptive optics system[J].Iranian Endodontic Journal,2013,8(1):1-5.DOI:10.1117/12.2005959.
[17] PAPANDREOU G,ZHU T,KANAZAWA N,et al.Towards accurate multi-person pose estimation in the wild[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:3711-3719.DOI:10.1109/CVPR.2017.395.
[18] 杨学存,李杰华,陈丽媛,等.基于人体骨架的扶梯乘客异常行为识别方法[J/OL].安全与环境学报,2022:1-9[2023-06-25] .DOI:10.13637/j.issn.1009-6094.2022.2404.
[19] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].Advances in Neural Information Processing Systems,2017,30:6000-6010.DOI:10.48550/arXiv.1706.03762.
[20] LI Yanjie,ZHANG Shoukui,WANG Zhicheng,et al.TokenPose: Learning keypoint tokens for human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE Press,2021:11313-11322.DOI:10.48550/arXiv.2104.03516.
[21] LI Ke,WANG Shijie,ZHANG Xiang,et al.Pose recognition with cascade transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE Press,2021:1944-1953.DOI:10.1109/CVPR46437.2021.00198.
[22] MAJI D,NAGORI S,MATHEW M,et al.YOLO-Pose: Enhancing YOLO for multi person pose estimation using object keypoint similarity loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE Press,2022:2637-2646.DOI:10.48550/arXiv.2204.06806.
[23] REDMON J,FARHADI A.YOLOv3: An incremental improvement[C]//Computer Vision and Pattern Recognition.Berlin:Springer,2018,1804:1-6.DOI:10.48550/arXiv.1804.02767.
[24] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4: Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2023-09-08] .https://doi.org/10.48550/arXiv.2004.10934.
[25] WU Yue,CHEN Yinpeng,YUAN Lu,et al.Rethinking classification and localization for object detection[EB/OL].(2020-04-02)[2023-09-07] .https://doi.org/10.48550/arXiv.1904.06493.
[26] SONG Guanglu,LIU Yu,WANG Xiaogang.Revisiting the sibling head in object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:11563-11572.DOI:10.1109/CVPR42600.2020.01158.
[27] MA Ningning,ZHANG Xiangyu,ZHENG Haitao.ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]//European Conference on Computer Vision.[S.l.]:Springer,2018:122-138.DOI:10.1007/978-3-030-01264-9_8.
[28] TAN Mingxing,LE Q V.EfficientNetV2: Smaller models and faster training[C]//International Conference on Machine Learning.[S.l.]:PMLR,2021:10096-10106.DOI:10.48550/arXiv.2104.00298.
[29] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE Press,2023:7464-7475.DOI:10.1109/CVPR52729.2023.00721.
[30] NEWELL A,YANG Kaiyu,DENG Jia.Stacked hourglass networks for human pose estimation[EB/OL].(2016-07-26)[2023-09-07] .https://doi.org/10.48550/arXiv.1603.06937.
[31] KREISS S,BERTONI L,ALAHI A.PifPaf: Composite fields for human pose estimation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:11969-11978.DOI:10.1109/CVPR.2019.01225.
[32] CAO Xianshuai,SHI Yuliang,YU Han,et al.DEKR: Description enhanced knowledge graph for machine learning method recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information.[S.l.]:ACM,2021:203-212.DOI:10.1145/3404835.3462900.