[1]宋一博,郑才仕,周树锋.铜死亡在肿瘤治疗方面的研究进展[J].华侨大学学报(自然科学版),2023,44(6):671-675.[doi:10.11830/ISSN.1000-5013.202311006]
 SONG Yibo,ZHENG Caishi,ZHOU Shufeng.Research Progress of Cuproptosis in Tumor Therapy[J].Journal of Huaqiao University(Natural Science),2023,44(6):671-675.[doi:10.11830/ISSN.1000-5013.202311006]
点击复制

铜死亡在肿瘤治疗方面的研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第6期
页码:
671-675
栏目:
出版日期:
2023-11-20

文章信息/Info

Title:
Research Progress of Cuproptosis in Tumor Therapy
文章编号:
1000-5013(2023)06-0671-05
作者:
宋一博 郑才仕 周树锋
华侨大学 化工学院, 福建 厦门 361021
Author(s):
SONG Yibo ZHENG Caishi ZHOU Shufeng
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
铜代谢 铜稳态 铜死亡 肿瘤治疗
Keywords:
copper metabolism copper homeostasis cuproptosis tumor therapy
分类号:
R730.2
DOI:
10.11830/ISSN.1000-5013.202311006
文献标志码:
A
摘要:
过量的铜可以导致肿瘤细胞发生程序性细胞死亡(PCD),即铜死亡。这一过程是通过破坏肿瘤细胞代谢和诱导蛋白质毒性应激发生的,这一发现强调了铜稳态和肿瘤代谢之间的复杂联系。综述细胞铜代谢和铜死亡的具体机制,阐述铜基纳米材料在肿瘤治疗中的应用。结果表明:铜死亡途径为肿瘤治疗开辟了新视角,具有广阔的应用前景。
Abstract:
Excess copper induces programmed cell death(PCD)in tumor cells, known as cuproptosis. This process occurs through disruption of tumor cell metabolism and induction of protein toxicity stress, highlighting the complex interplay between copper homeostasis and tumor metabolism. The specific mechanisms of copper metabolism and cuproptosis in cells are reviewed, and the applications of copper-based nanomaterials in tumor therapy are described. The results show that copper-induced cell death provides a new perspective for tumor therapy and has potential application prospects.

参考文献/References:

[1] TSVETKOV P,COY S,PETROVA B,et al.Copper induces cell death by targeting lipoylated tca cycle proteins[J].Science,2022,375(6586):1254-1261.DOI:10.1126/science.abf0529.
[2] CHEN Xinyue,CAI Qi,LIANG Ruikai,et al.Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies[J].Cell Death and Disease,2023,14(2):105.DOI:10.1038/s41419-023-05639-w.
[3] WANG Wuyin,MO Wentao,HANG Zishan,et al.Cuproptosis: Harnessing transition metal for cancer therapy[J].ACS Nano,2023,17(20):19581-19599.DOI:10.1021/acsnano.3c07775.
[4] HORNG Y C,COBINE P A,MAXFIELD A B,et al.Membrane transport, structure, function, and biogenesis: Specific copper transfer from the COX17 metallochaperone to both SCO1 and COX11 in the assembly of yeast cytochrome c oxidase[J].The Journal of Biological Chemistry,2004,279(34):35334-35340.DOI:10.1074/jbc.M404747200.
[5] CULOTTA V C,KLOMP L W J,STRAIN J.The copper chaperone for superoxide dismutase[J].Journal of Biological Chemistry,1997,272(38):23469-23472.DOI:10.1074/jbc.272.38.23469.
[6] HATORI Y,INOUYE S,AKAGI R.Thiol-based copper handling by the copper chaperone atox1[J].International Union of Biochemistry Molecular Biology Life,2017,69(4):246-254.DOI:10.1002/iub.1620.
[7] FRANCESCO T B,SERENA S.Mechanisms of charge transfer in human copper atpases ATP7A and ATP7B[J].IUBMB Life,2017,69(4):218-225.DOI:10.1002/iub.1603.
[8] CHEN Liyun,MIN Junxia,WANG Fudi.Copper homeostasis and cuproptosis in health and disease[J].Signal Transduction and Targeted Therapy,2022,7(1):378.DOI:10.1038/s41392-022-01229-y.
[9] HOON S,LEAH H Z.Genetic defects in copper metabolism[J].The Journal of Nutrition,2003,133(5):1527S-1531S.DOI:10.1038/sj.ijo.0802279.
[10] TSVETKOV P,DETAPPE A,CAI Kai,et al.Mitochondrial metabolism promotes adaptation to proteotoxic stress[J].Nature Chemical Biology,2019,15(7):757.DOI:10.1038/s41589-019-0315-5.
[11] XU Weijun,WANG Yaping,HOU Guanghui,et al.Tumor microenvironment responsive hollow nanoplatform for triple amplification of oxidative stress to enhance cuproptosis-based synergistic cancer therapy[J].Advanced Healthcare Materials,2023,12(13):2202949.DOI:10.1002/adhm.202202949.
[12] SHEEN-CHEN S M,HUNG K S,ENG H L.Effect of BOC-D-FMK on hepatocyte apoptosis after bile duct ligation in rat and survival rate after endotoxin challenge[J].Journal of Gastroenterology and Hepatology,2008,23(8pt1):1276-1279.DOI:10.1111/j.1440-1746.2008.05368.x.
[13] XIE Wensheng,GUO Zhenhu,ZHAO Lingyun,et al.The copper age in cancer treatment: From copper metabolism to cuproptosis[J].Progress in Materials Science,2023,138(1):101145.DOI:10.1016/j.pmatsci.2023.101145.
[14] YOU Zerong,SAVITZ S,YANG Jinsheng.Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice[J].Journal of Cerebral Blood Flow and Metabolism,2008,28(9):1564-1573.DOI:10.1038/jcbfm.2008.44.
[15] CECONI C,CURELLO S,CARGNONI A,et al.The role of glutathione status in the protection against ischaemic and reperfusion damage: Effects of N-acetyl cysteine[J].Journal of Molecular and Cellular Cardiology,1987,19(3):S11.DOI:10.1016/S0022-2828(87)80040-8.
[16] 刘骏达,钟薇薇,鲁显福,等.铜死亡与铜代谢相关疾病研究进展[J].江苏大学学报(医学版),2022,32(4):318-325.DOI:10.13312/j.issn.1671-7783.y220108.
[17] 朱洁洁,王华.铜诱导调节性细胞死亡的作用机制与抗肿瘤治疗的研究[J].江苏大学学报(医学版),2022,32(4):326-349.DOI:10.13312/j.issn.1671-7783.y220122.
[18] 黄本林,付瑞,王宁,等.铜死亡与肿瘤的关系研究进展[J].临床误诊误治,2022,35(11):112-116.DOI:10.3969/j.issn.1002-3429.2022.11.024.
[19] LEE K C,YEO W S,ROE J H.Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli[J].Journal of Bacteriology,2008,190(24):8244-8247.DOI:10.1128/JB.01161-08.
[20] LI Duguang,SHI Zhaoqi,LIU Xiaolong,et al.Identification and development of a novel risk model based on cuproptosis-associated RNA methylation regulators for predicting prognosis and characterizing immune status in hepatocellular carcinoma[J].Hepatology International,2023,17(1):112-130.DOI:10.1007/s12072-022-10460-2.
[21] WANG Changhong,XUE Ji,YANG Guang,et al.Role of NSC319726 in ovarian cancer based on the bioinformatics analyses[J].Oncotargets and Therapy,2015,8(3):3757-3765.DOI:10.2147/OTT.S86343.
[22] NGWANE A H,PETERSEN R D,BAKER B,et al.The evaluation of the anti-cancer drug elesclomol that forms a redox-active copper chelate as a potential anti-tubercular drug: The evaluation of the anti-cancer drug elesclomol[J].International Union of Biochemistry and Molecular Biology Life,2019,71(5):532-538.DOI:10.1002/iub.2002.
[23] DU Yaqian,ZHANG Rui,YANG Jiani,et al.A “closed-loop” therapeutic strategy based on mutually reinforced ferroptosis and immunotherapy[J].Advanced Functional Materials,2022,32(13):2111784.DOI:10.1002/adfm.202111784.
[24] XU Yuzhi,LIU Siyang,ZENG Leli,et al.An enzyme-engineered nonporous copper(I)coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy[J].Advanced Materials,2022,34(43):2204733.DOI:10.1002/adma.202204733.
[25] NI Cheng,OUYANG Zhijun,LI Gaoming,et al.A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy[J].Acta Biomaterialia,2023,164(1):474-486.DOI:10.1016/j.actbio.2023.04.003.
[26] XU Weijun,QIAN Junmin,HOU Guanghui,et al.A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolisms[J].Advanced Functional Materials,2022,32(40):2205013.DOI:10.1002/adfm.202205013.
[27] ZHOU Jie,YU Qiao,SONG Juan,et al.Photothermally triggered copper payload release for cuproptosis-promoted cancer synergistic therapy[J].Angewandte Chemie International Edition,2023,62(12):e202213922.DOI:10.1002/anie.202213922.

备注/Memo

备注/Memo:
收稿日期: 2023-11-06
通信作者: 周树锋(1966-),男,教授,博士,博士生导师,主要从事系统药理学、药物代谢与转运的研究。E-mail:szhou@hqu.edu.cn。
更新日期/Last Update: 2023-11-20