参考文献/References:
[1] TSVETKOV P,COY S,PETROVA B,et al.Copper induces cell death by targeting lipoylated tca cycle proteins[J].Science,2022,375(6586):1254-1261.DOI:10.1126/science.abf0529.
[2] CHEN Xinyue,CAI Qi,LIANG Ruikai,et al.Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies[J].Cell Death and Disease,2023,14(2):105.DOI:10.1038/s41419-023-05639-w.
[3] WANG Wuyin,MO Wentao,HANG Zishan,et al.Cuproptosis: Harnessing transition metal for cancer therapy[J].ACS Nano,2023,17(20):19581-19599.DOI:10.1021/acsnano.3c07775.
[4] HORNG Y C,COBINE P A,MAXFIELD A B,et al.Membrane transport, structure, function, and biogenesis: Specific copper transfer from the COX17 metallochaperone to both SCO1 and COX11 in the assembly of yeast cytochrome c oxidase[J].The Journal of Biological Chemistry,2004,279(34):35334-35340.DOI:10.1074/jbc.M404747200.
[5] CULOTTA V C,KLOMP L W J,STRAIN J.The copper chaperone for superoxide dismutase[J].Journal of Biological Chemistry,1997,272(38):23469-23472.DOI:10.1074/jbc.272.38.23469.
[6] HATORI Y,INOUYE S,AKAGI R.Thiol-based copper handling by the copper chaperone atox1[J].International Union of Biochemistry Molecular Biology Life,2017,69(4):246-254.DOI:10.1002/iub.1620.
[7] FRANCESCO T B,SERENA S.Mechanisms of charge transfer in human copper atpases ATP7A and ATP7B[J].IUBMB Life,2017,69(4):218-225.DOI:10.1002/iub.1603.
[8] CHEN Liyun,MIN Junxia,WANG Fudi.Copper homeostasis and cuproptosis in health and disease[J].Signal Transduction and Targeted Therapy,2022,7(1):378.DOI:10.1038/s41392-022-01229-y.
[9] HOON S,LEAH H Z.Genetic defects in copper metabolism[J].The Journal of Nutrition,2003,133(5):1527S-1531S.DOI:10.1038/sj.ijo.0802279.
[10] TSVETKOV P,DETAPPE A,CAI Kai,et al.Mitochondrial metabolism promotes adaptation to proteotoxic stress[J].Nature Chemical Biology,2019,15(7):757.DOI:10.1038/s41589-019-0315-5.
[11] XU Weijun,WANG Yaping,HOU Guanghui,et al.Tumor microenvironment responsive hollow nanoplatform for triple amplification of oxidative stress to enhance cuproptosis-based synergistic cancer therapy[J].Advanced Healthcare Materials,2023,12(13):2202949.DOI:10.1002/adhm.202202949.
[12] SHEEN-CHEN S M,HUNG K S,ENG H L.Effect of BOC-D-FMK on hepatocyte apoptosis after bile duct ligation in rat and survival rate after endotoxin challenge[J].Journal of Gastroenterology and Hepatology,2008,23(8pt1):1276-1279.DOI:10.1111/j.1440-1746.2008.05368.x.
[13] XIE Wensheng,GUO Zhenhu,ZHAO Lingyun,et al.The copper age in cancer treatment: From copper metabolism to cuproptosis[J].Progress in Materials Science,2023,138(1):101145.DOI:10.1016/j.pmatsci.2023.101145.
[14] YOU Zerong,SAVITZ S,YANG Jinsheng.Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice[J].Journal of Cerebral Blood Flow and Metabolism,2008,28(9):1564-1573.DOI:10.1038/jcbfm.2008.44.
[15] CECONI C,CURELLO S,CARGNONI A,et al.The role of glutathione status in the protection against ischaemic and reperfusion damage: Effects of N-acetyl cysteine[J].Journal of Molecular and Cellular Cardiology,1987,19(3):S11.DOI:10.1016/S0022-2828(87)80040-8.
[16] 刘骏达,钟薇薇,鲁显福,等.铜死亡与铜代谢相关疾病研究进展[J].江苏大学学报(医学版),2022,32(4):318-325.DOI:10.13312/j.issn.1671-7783.y220108.
[17] 朱洁洁,王华.铜诱导调节性细胞死亡的作用机制与抗肿瘤治疗的研究[J].江苏大学学报(医学版),2022,32(4):326-349.DOI:10.13312/j.issn.1671-7783.y220122.
[18] 黄本林,付瑞,王宁,等.铜死亡与肿瘤的关系研究进展[J].临床误诊误治,2022,35(11):112-116.DOI:10.3969/j.issn.1002-3429.2022.11.024.
[19] LEE K C,YEO W S,ROE J H.Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli[J].Journal of Bacteriology,2008,190(24):8244-8247.DOI:10.1128/JB.01161-08.
[20] LI Duguang,SHI Zhaoqi,LIU Xiaolong,et al.Identification and development of a novel risk model based on cuproptosis-associated RNA methylation regulators for predicting prognosis and characterizing immune status in hepatocellular carcinoma[J].Hepatology International,2023,17(1):112-130.DOI:10.1007/s12072-022-10460-2.
[21] WANG Changhong,XUE Ji,YANG Guang,et al.Role of NSC319726 in ovarian cancer based on the bioinformatics analyses[J].Oncotargets and Therapy,2015,8(3):3757-3765.DOI:10.2147/OTT.S86343.
[22] NGWANE A H,PETERSEN R D,BAKER B,et al.The evaluation of the anti-cancer drug elesclomol that forms a redox-active copper chelate as a potential anti-tubercular drug: The evaluation of the anti-cancer drug elesclomol[J].International Union of Biochemistry and Molecular Biology Life,2019,71(5):532-538.DOI:10.1002/iub.2002.
[23] DU Yaqian,ZHANG Rui,YANG Jiani,et al.A “closed-loop” therapeutic strategy based on mutually reinforced ferroptosis and immunotherapy[J].Advanced Functional Materials,2022,32(13):2111784.DOI:10.1002/adfm.202111784.
[24] XU Yuzhi,LIU Siyang,ZENG Leli,et al.An enzyme-engineered nonporous copper(I)coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy[J].Advanced Materials,2022,34(43):2204733.DOI:10.1002/adma.202204733.
[25] NI Cheng,OUYANG Zhijun,LI Gaoming,et al.A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy[J].Acta Biomaterialia,2023,164(1):474-486.DOI:10.1016/j.actbio.2023.04.003.
[26] XU Weijun,QIAN Junmin,HOU Guanghui,et al.A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolisms[J].Advanced Functional Materials,2022,32(40):2205013.DOI:10.1002/adfm.202205013.
[27] ZHOU Jie,YU Qiao,SONG Juan,et al.Photothermally triggered copper payload release for cuproptosis-promoted cancer synergistic therapy[J].Angewandte Chemie International Edition,2023,62(12):e202213922.DOI:10.1002/anie.202213922.