[1]卢松凯,董毓利,房圆圆,等.高温下铝合金薄板面内轴压屈曲特性分析[J].华侨大学学报(自然科学版),2023,44(5):563-573.[doi:10.11830/ISSN.1000-5013.202305001]
 LU Songkai,DONG Yuli,FANG Yuanyuan,et al.Analysis of In-Plane Axial Compression Buckling Characteristics of Aluminum Alloy Sheet at High Temperatures[J].Journal of Huaqiao University(Natural Science),2023,44(5):563-573.[doi:10.11830/ISSN.1000-5013.202305001]
点击复制

高温下铝合金薄板面内轴压屈曲特性分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第5期
页码:
563-573
栏目:
出版日期:
2023-09-20

文章信息/Info

Title:
Analysis of In-Plane Axial Compression Buckling Characteristics of Aluminum Alloy Sheet at High Temperatures
文章编号:
1000-5013(2023)05-0563-11
作者:
卢松凯 董毓利 房圆圆 齐建全
华侨大学 土木工程学院, 福建 厦门 361021
Author(s):
LU Songkai DONG Yuli FANG Yuanyuan QI Jianquan
College of Civil Engineering, Huaqiao University, Xiamen 361021, China
关键词:
铝合金薄板 有限元分析 高温屈曲 Mann-Kendall准则 非线性
Keywords:
aluminum alloy sheet finite element analysis high temperature buckling Mann-Kendall rule nonlinearity
分类号:
TG115.9
DOI:
10.11830/ISSN.1000-5013.202305001
文献标志码:
A
摘要:
研究高温下铝合金薄板面内轴压屈曲特性,结合试验结果证明所建立有限元模型的可靠性.基于模型开展高温下不同参数的屈曲分析,获得薄板的荷载-挠度曲线;运用Mann-Kendall准则,判断初始突变温度.结果表明:恒温加载下,提高边界条件的约束作用、选择短边加载或长宽比较大的截面能有效降低屈曲阶段薄板挠度;恒载升温下,板边缘的转动能有效减小热应力产生的屈曲挠度;长边加载下,选择长宽比较小的薄板能有效降低挠度;初始缺陷影响薄板屈曲时的挠度变化,初始缺陷越大,屈曲阶段挠度变化的斜率越大.
Abstract:
The in-plane axial compression buckling characteristics of aluminum alloy sheet at high temperature are studied,and the reliability of the finite element model is verified by the experimental results. Based on the model,the buckling analysis of different parameters at high temperature is carried out to obtain the load-deflection curves of the sheet. Mann-Kendall rule is used to determine the initial abrupt temperature. The results show that under constant temperature loading,the deflection of sheet can be reduced effectively by improving the constraint of boundary conditions,selecting the short side loading or the section with large length-width ratio; under constant load heating,the rotation of the plate edge can effectively reduce the buckling deflection caused by thermal stress; under long side loading,the deflection can be reduced effectively by choosing sheet with smaller length-width ratio. The initial defect affects the deflection change of the sheet during buckling,and the larger the initial defect leads to the larger slope of the deflection change in the buckling stage.

参考文献/References:

[1] 崔德刚.结构稳定性设计手册 [M].北京:航空工业出版社,1996.
[2] HEINZ A,HASZLER A,KEIDEL C,et al.Recent development in aluminium alloys for aerospace applications[J].Materials Science and Engineering:A,2000,280(1):102-107.DOI:10.1016/S0921-5093(99)00674-7.
[3] 杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005(2):76-80.DOI:10.3321/j.issn:1005-023X.2005.02.023.
[4] STALEY J T,LIU J,JR HUNT W H.Aluminum alloys for aerostructures[J].Advanced Materials and Processes,1997,152(4):17-21.
[5] FILATOV Y A,YELAGIN V I,ZAKHAROV V V.New Al-Mg-Sc alloys[J].Materials Science and Engineering:A,2000,280(1):97-101.DOI:10.1016/S0921-5093(99)00673-5.
[6] LIU J,KULAK M.A new paradigm in the design of aluminum alloys for aerospace applications[J].Materials Science Forum,2000,331/332/333/334/335/336/337:127-142.DOI:10.4028/www.scientific.net/MSF.331-337.127.
[7] 张铮,张其林.偏心受压铝合金构件稳定的试验研究[J].建筑钢结构进展,2008(1):8-14.
[8] 王元清,石永久,袁焕鑫,等.铝合金板件的受压屈曲分析[J].武汉大学学报(工学版),2011,44(1):74-78.
[9] 李帼昌,张洪恩,杨志坚,等.新型双铝合金板装配式屈曲约束支撑有限元分析[J].钢结构,2018,33(5):57-62.DOI:10.13206/j.gjg201805011.
[10] 常婷.铝合金轴心受压构件局部稳定与相关稳定性能研究[D].北京:清华大学,2014.
[11] 袁霖,张其林.铝合金受压板件局部屈曲承载力设计方法[J].计算机辅助工程,2019,28(4):50-58.DOI:10.13340/j.cae.2019.04.010.
[12] 赵远征.6082-T6铝合金偏压、受弯构件力学性能研究及可靠度分析[D].哈尔滨:哈尔滨工业大学,2020.
[13] 马开开.铝合金加筋板结构强度研究[D].哈尔滨:哈尔滨工程大学,2019.
[14] áLVAREZ J G,BISAGNI C.A study on thermal buckling and mode jumping of metallic and composite plates[J].Aerospace,2021,8:56.DOI:10.3390/aerospace8020056.
[15] BAI Yunhe,YU Kaiping,ZHAO Jie,et al.Experimental and simulation investigation of temperature effects on modal characteristics of composite honeycomb structure[J].Composite Structures,2018,201:816-827.DOI:10.1016/j.compstruct.2018.06.106.
[16] XU Yingjie,REN Shixuan,ZHANG Weihong,et al.Study of thermal buckling behavior of plain woven C/SiC composite plate using digital image correlation technique and finite element simulation[J].Thin-Walled Structures,2018,131:385-392.DOI:10.1016/j.tws.2018.07.023.
[17] 沈惠申.板壳后屈曲行为[M].上海:上海科学技术出版社,2014.
[18] KHAZAEINEJAD P,USMANI A S.On thermo-mechanical nonlinear behaviour of shallow shells[J].International Journal of Non-Linear Mechanics,2016,82:114-123.DOI:10.1016/j.ijnonlinmec.2016.03.006.
[19] SHARIAT B S,ESLAMI M R.Thermomechanical stability of imperfect functionally graded plates based on the third order theory[J].AIAA Journal,2006,44(12):2929-2936.DOI:10.2514/1.19492.
[20] KHAZAEINEJAD P,USMANI A S,LAGHROUCHE O.An analytical study of the nonlinear thermo-mechanical behaviour of thin isotropic rectangular plates[J].Computers and Structures,2014,141:1-8.DOI:10.1016/j.compstruc.2014.05.006.
[21] YAMAKI N.Experiments on the postbuckling behavior of square plates loaded in edge compression[J].Journal of Applied Mechanics,1961,28(2):238-244.DOI:10.1115/1.3641660.
[22] CAMPBELL J,HETEY L,VIGNJEVIC R.Non-linear idealisation error analysis of a metallic stiffened panel loaded in compression[J].Thin-Walled Structures,2012,54:44-53.DOI:10.1016/j.tws.2012.01.016.
[23] 张鹏飞,卢嘉玮,张兆年,等.6061-T6铝合金构件焊接残余应力分布[J].兰州交通大学学报,2021,40(3):15-19.DOI:10.3969/j.issn.1001-4373.2021.03.003.

相似文献/References:

[1]陈忠汉.钢筋混凝土构件有限元弹塑性分析(Ⅱ) 构件裂缝的随机性分析[J].华侨大学学报(自然科学版),1987,8(2):164.[doi:10.11830/ISSN.1000-5013.1987.02.0164]
 Chen Zhonghan.The Finite Element Elasto-plastic Analysis of Reinforced Concrete Members(Ⅱ) Random Analysis for the Crack[J].Journal of Huaqiao University(Natural Science),1987,8(5):164.[doi:10.11830/ISSN.1000-5013.1987.02.0164]
[2]陈忠汉.钢筋混凝土构件有限元弹塑性分析(Ⅲ) 剪力墙数值模拟分析[J].华侨大学学报(自然科学版),1988,9(3):330.[doi:10.11830/ISSN.1000-5013.1988.03.0330]
 Chen Zhonghan.Finite Element Elasto-Plastic Analysis of Reinforced Concrete Members (Ⅲ) Numerical Simulated Analysis of Shear Walls[J].Journal of Huaqiao University(Natural Science),1988,9(5):330.[doi:10.11830/ISSN.1000-5013.1988.03.0330]
[3]杨翔翔,翁荣周.二维肋片传热的有限元分析[J].华侨大学学报(自然科学版),1988,9(4):509.[doi:10.11830/ISSN.1000-5013.1988.04.0509]
 Yang Xiangxiang,Weng Rongzhou.Two-dimensional Heat Transfer in a Fin as Observed by Finite Element Analysis[J].Journal of Huaqiao University(Natural Science),1988,9(5):509.[doi:10.11830/ISSN.1000-5013.1988.04.0509]
[4]林国裕,董友成.弹塑性动态J积分的有限元分析[J].华侨大学学报(自然科学版),1989,10(2):156.[doi:10.11830/ISSN.1000-5013.1989.02.0156]
 Lin Guoyu,Dong Youcheng.Finite Element Analysis on Elastic-Plastic Dynamic J Integral[J].Journal of Huaqiao University(Natural Science),1989,10(5):156.[doi:10.11830/ISSN.1000-5013.1989.02.0156]
[5]陈誉.弦杆弯折T型圆钢管相贯节点抗弯性能分析[J].华侨大学学报(自然科学版),2007,28(4):422.[doi:10.3969/j.issn.1000-5013.2007.04.023]
 CHEN Yu.Finite Element Analysis on Flexural Performance of Unstiffened CHS T-Joints with Fold Chord[J].Journal of Huaqiao University(Natural Science),2007,28(5):422.[doi:10.3969/j.issn.1000-5013.2007.04.023]
[6]谢吓弟,郭子雄,刘阳.CSRC柱轴压性能试验及非线性全过程分析[J].华侨大学学报(自然科学版),2008,29(4):584.[doi:10.11830/ISSN.1000-5013.2008.04.0584]
 XIE Xia-di,GUO Zi-xiong,LIU Yang.Experimental Study and Finite Element Analysis of CSRC Columns Under Axial Compression[J].Journal of Huaqiao University(Natural Science),2008,29(5):584.[doi:10.11830/ISSN.1000-5013.2008.04.0584]
[7]陈誉.搭接节点圆钢管桁架结构轴力计算模型[J].华侨大学学报(自然科学版),2009,30(2):211.[doi:10.11830/ISSN.1000-5013.2009.02.0211]
 CHEN Yu.Axial Force Calculation Model of Circular Hollow Steel Member in Truss with Overlapped Unstiffened Joints[J].Journal of Huaqiao University(Natural Science),2009,30(5):211.[doi:10.11830/ISSN.1000-5013.2009.02.0211]
[8]欧阳文俊,郭子雄,刘阳.利用ADINA的CSRC柱轴压性能数值模拟[J].华侨大学学报(自然科学版),2009,30(6):681.[doi:10.11830/ISSN.1000-5013.2009.06.0681]
 OUYANG Wen-jun,GUO Zi-xiong,LIU Yang.Finite Element Analysis of CSRC Columns Under Axially Loading Based on ADINA[J].Journal of Huaqiao University(Natural Science),2009,30(5):681.[doi:10.11830/ISSN.1000-5013.2009.06.0681]
[9]朱奇云,郭子雄.SRC柱-RC梁混合节点非线性有限元分析[J].华侨大学学报(自然科学版),2010,31(4):453.[doi:10.11830/ISSN.1000-5013.2010.04.0453]
 ZHU Qi-yun,GUO Zi-xiong.Nonlinear Finite Element Analysis of SRC Column-RC Beam Hybrid Joints[J].Journal of Huaqiao University(Natural Science),2010,31(5):453.[doi:10.11830/ISSN.1000-5013.2010.04.0453]
[10]刘阳,郭子雄,叶勇.核心型钢混凝土柱抗震性能试验及数值模拟[J].华侨大学学报(自然科学版),2011,32(1):72.[doi:10.11830/ISSN.1000-5013.2011.01.0072]
 LIU Yang,GUO Zi-xiong,YE Yong.Experimental Investigation and Numerical Simulation of Seismic Behavior of CSRC Columns[J].Journal of Huaqiao University(Natural Science),2011,32(5):72.[doi:10.11830/ISSN.1000-5013.2011.01.0072]

备注/Memo

备注/Memo:
收稿日期: 2023-05-29
通信作者: 董毓利(1965-),男,教授,博士,博士生导师,主要从事结构在高温下性能的研究.E-mail:dongyl@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51978293)
更新日期/Last Update: 2023-09-20