参考文献/References:
[1] FUKUDA I,TSUTSUMI M.On coupled Klein-Gordon-Schr?dinger equations,Ⅱ[J].Journal of Mathematical Analysis and Applications,1978,66(2):358-378.DOI:10.1016/0022-247X(78)90239-1.
[2] 夏静娜,韩淑霞,王明亮.Klein-Gordon-Schr?dinger方程组的精确孤立波解[J].应用数学和力学,2002,23(1):52-58.DOI:10.3321/j.issn:1000-0887.2002.01.007.
[3] XIANG Xinmin.Spectral method for solving the system of equations of Schr?dinger-Klein-Gordon field[J].Journal of Computational and Applied Mathematics,1988,21:161-171.DOI:10.1016/0377-0427(88)90265-8.
[4] ZHANG Luming.Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr?dinger equations in one space dimension[J].Applied Mathematics and Computation,2005,163(1):343-355.DOI:10.1016/j.amc.2004.02.010.
[5] CHEN Juan,CHEN Fangqi.Convergence of a high-order compact finite difference scheme for the Klein-Gordon-Schr?dinger equations[J].Applied Numerical Mathematics,2019,143:133-145.DOI:10.1016/j.apnum.2019.03.004.
[6] HONG Jialin,JIANG Shanshan,KONG Linghua,et al.Numerical comparison of five difference schemes for coupled Klein-Gordon-Schr?dinger equations in quantum physics[J].Journal of Physics A: Mathematical and Theoretical,2007,40:9125-9135.
[7] ZHANG Jingjing,KONG Linghua.New energy-preserving schemes for Klein-Gordon-Schr?dinger equations[J].Applied Mathematical Modelling,2016,40(15/16):6969-6982.DOI:10.1016/j.apm.2016.02.026.
[8] SHEN Jie,XU Jie,YANG Jiang.The scalar auxiliary variable(SAV)approach for gradient flows[J].Journal of Computational Physics,2018,353:407-416.DOI:10.1016/j.jcp.2017.10.021.
[9] WANG Rui,JI Yanzhou,SHEN Jie,et al.Application of scalar auxiliary variable scheme to phase-field equations[J].Computational Materials Science,2022,212:111556.DOI:10.1016/j.commatsci.2022.111556.
[10] CHENG Qing,LIU Chun,SHEN Jie.A new Lagrange multiplier approach for gradient flows[J].Computer Methods in Applied Mechanics and Engineering,2020,367:113070.DOI:10.1016/j.cma.2020.113070.
[11] CHENG Qing,SHEN Jie.Global constraints preserving scalar auxiliary variable schemes for gradient flows[J].SIAM Journal on Scientific Computing,2020,42(4):A2489-A2513.DOI:10.1137/19M1306221.
[12] ZHANG Yanrong,SHEN Jie.Efficient structure preserving schemes for the Klein-Gordon-Schr?dinger equations[J].Journal of Scientific Computing,2021,47:89-47.DOI:10.1007/s10915-021-01649-y.
[13] LIN Lianlei,YANG Zhiguo,DONG Suchuan.Numerical approximation of incompressible navier-stokes equations based on an auxiliary energy variable[J].Journal of Computational Physics,2019,388:1-22.DOI:10.1016/j.jcp.2019.03.012.
[14] LIU Zhengguang,LI Xiaoli.The exponential scalar auxiliary variable(E-SAV)approach for phase field models and its explicit computing[J].SIAM Journal on Scientific Computing,2020,42(3):B630-B655.DOI:10.1137/19M13 05914.
[15] 任全伟,庄清渠.一类四阶微积分方程的紧差分格式[J].华侨大学学报(自然科学版),2014,35(2):232-237.DOI:10.11830/ISSN.1000-5013.2014.02.0232.
[16] 王廷春,郭柏灵.一维非线性 Schr?dinger 方程的两个无条件收敛的守恒紧致差分格式[J].中国科学:数学,2011,41(3):207-233.DOI:10.1360/0120-846.