[1]李昂,俞缙,刘士雨,等.水-力耦合作用下砂岩松弛特性试验与本构模型[J].华侨大学学报(自然科学版),2023,44(4):469-476.[doi:10.11830/ISSN.1000-5013.202212027]
 LI Ang,YU Jin,LIU Shiyu,et al.Experiment and Constitutive Model of Relaxation Behavior of Sandstone Under Water-Force Coupling Action[J].Journal of Huaqiao University(Natural Science),2023,44(4):469-476.[doi:10.11830/ISSN.1000-5013.202212027]
点击复制

水-力耦合作用下砂岩松弛特性试验与本构模型()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第4期
页码:
469-476
栏目:
出版日期:
2023-07-17

文章信息/Info

Title:
Experiment and Constitutive Model of Relaxation Behavior of Sandstone Under Water-Force Coupling Action
文章编号:
1000-5013(2023)04-0469-08
作者:
李昂 俞缙 刘士雨 涂兵雄 常方强
华侨大学 福建省隧道与城市地下空间工程技术研究中心, 福建 厦门 361021
Author(s):
LI Ang YU Jin LIU Shiyu TU Bingxiong CHANG Fangqiang
Fujian Engineering Technology Research Center of Tunnel and Urban Underground Space, Huaqiao University, Xiamen 361021, China
关键词:
岩石力学 应力松弛 水-力耦合 西原模型 三轴压缩 全应力-应变过程
Keywords:
rock mechanics stress relaxation water-force coupling Nishihara model triaxial compression whole stress-strain process
分类号:
TU452;U459.3
DOI:
10.11830/ISSN.1000-5013.202212027
文献标志码:
A
摘要:
采用电液伺服三轴试验系统,对不同围压和水压条件下的红砂岩进行分级加载应力松弛试验.分析砂岩水-力耦合作用下全应力-应变过程的应力松弛量、应力松弛速率的变化规律.将含水开关与西原模型串联,实现应力松弛和水压在本构关系上的耦合,建立非线性砂岩松弛模型.结果表明:同一围压下,砂岩松弛量随着应变水平的提高而增加,砂岩松弛量在软化阶段达到最大;同一围压、同一应变水平下,砂岩松弛量随着水压的增加而降低,表现出水压对砂岩应力松弛具有抑制作用;改进的西原模型能较好描述砂岩应力松弛各阶段的力学行为,模型参数E1,E2123在软化阶段之前随应变水平的提高呈现非线性增长;各阶段砂岩松弛速率呈“L”形,松弛速率快速下降为减速松弛阶段,松弛速率平稳下降为稳定松弛阶段.
Abstract:
The step loading stress relaxation experiment of red sandstone under different confining pressure and water pressure are carried out by electrohydraulic servo triaxial experiment system. The variation of stress relaxation amount and stress relaxation rate of sandstone in the whole stress-strain process under the water-force coupling action is analyzed. Connecting the water switch with Nishihara model in series, the coupling of stress relaxation and water pressure in constitutive relation is realized, and a nonlinear sandstone relaxation model is established.The results show that, under the same confining pressure, the amount of sandstone relaxation increases with the increase of strain level, and the relaxation amount reaches the maximum at the softening stage. Under the same confining pressure and strain level, the relaxation amount of sandstone decreases with the increase of water pressure, which shows that water pressure has a restraining effect on the stress relaxation of sandstone. The improved Nishihara model can well describe the mechanical behavior of sandstone stress relaxation in each stage. The parameters E1,E2123 of the model increase nonlinearly with the increase of strain level before the softening stage. The relaxation rate of each stage presents "L" shape, the rapid decrease of the relaxation rate is a slow relaxation stage, and the steady decrease of the relaxation rate is a sta-ble relaxation stage.

参考文献/References:

[1] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
[2] 侯朝炯.深部巷道围岩控制的关键技术研究[J].中国矿业大学学报,2017,46(5):970-978.DOI:10.13247/j.cnki.jcumt.000660.
[3] 于怀昌,赵阳,刘汉东,等.三轴应力作用下水对岩石应力松弛特性影响作用试验研究[J].岩石力学与工程学报,2015,34(2):313-322.DOI:10.13722/j.cnki.jrme.2015.02.010.
[4] 唐礼忠,潘长良.岩石在峰值荷载变形条件下的松弛试验研究[J].岩土力学,2003(6):940-942.DOI:10.16285/j.rsm.2003.06.015.
[5] ZHU Yaoliang,YU Jin,ZHOU Xianqi,et al.Uniaxial stress relaxation behavior of marble after cyclic disturbance loads[J].Mechanics of Time-Dependent Materials,2020,25(4):1-25.DOI:10.1007/s11043-020-09458-w.
[6] YANG Haiqing,LIU Junfeng,ZHOU Xiaoping.Effects of the loading and unloading conditions on the stress relaxation behavior of pre-cracked granite[J].Rock Mechanics and Rock Engineering,2017,50(5):1157-1169.DOI:10.1007/s00603-016-1161-3.
[7] YU Jin,ZHU Yaoliang,YAO Wei,et al.Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures[J].Measurement,2021,182:109777.DOI:10.1016/j.measurement.2021.109777.
[8] 田洪铭,陈卫忠,赵武胜,等.宜-巴高速公路泥质红砂岩三轴应力松弛特性研究[J].岩土力学,2013,34(4):981-986.DOI:10.16285/j.rsm.2013.04.029.
[9] 刘志勇,肖明砾,谢红强,等.基于损伤演化的片岩应力松弛特性[J].岩土力学,2016,37(增刊1):101-107.DOI:10.16285/j.rsm.2016.S1.013.
[10] 赵立财.含水砂岩蠕变损伤模型的二次开发及工程应用[J].长江科学院院报,2021,38(9):105-112,120.DOI:10.11988/ckyyb.20200650.
[11] 黄书岭,冯夏庭,周辉,等.水压和应力耦合下脆性岩石蠕变与破坏时效机制研究[J].岩土力学,2010,31(11):3441-3446,3451.DOI:10.16285/j.rsm.2010.11.051.
[12] 佘成学,崔旋.高孔隙水压力对岩石蠕变特性的影响[J].岩石力学与工程学报,2010,29(8):1603-1609.
[13] 刘小军,刘新荣,王铁行,等.考虑含水劣化效应的浅变质板岩蠕变本构模型研究[J].岩石力学与工程学报,2014,33(12):2384-2389.DOI:10.13722/j.cnki.jrme.2014.12.002.
[14] ZHOU Cuiying,YU Lei,YOU Fanfan,et al.Coupled seepage and stress model and experiment verification for creep behavior of soft rock[J].International Journal of Geomechanics,2020,20(9):04020146.DOI:10.1061/(ASCE)GM.1943-5622.0001774.
[15] 陈陆望,李圣杰,陈逸飞,等.岩石含水蠕变损伤模型的开发与应用[J].固体力学学报,2018,39(6):642-651.DOI:10.19636 /j.cnki.cjsm42-1250/o3.2018.018.
[16] 孙晓明,缪澄宇,姜铭,等.基于改进西原模型的不同含水率砂岩蠕变实验及理论研究[J].岩石力学与工程学报,2021,40(12):2411-2420.DOI:10.13722/j.cnki.jrme.2021.0302.
[17] 于怀昌,赵阳,刘汉东,等.三轴应力作用下水对岩石应力松弛特性影响作用试验研究[J].岩石力学与工程学报,2015,34(2):313-322.DOI:10.13722/j.cnki.jrme.2015.02.010.
[18] 陈灿灿,彭守建,许江,等.水压–应力耦合作用下砂岩应力松弛特性试验研究[J].岩石力学与工程学报,2022,41(6):1193-1207.DOI:10.13722/j.cnki.jrme.2021.0941.
[19] 刘泉声,魏莱,雷广峰,等.砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J].岩土工程学报,2018,40(10):1782-1789.DOI:10.11779/CJGE201810004.
[20] 李元松.高等岩土力学[M].武汉:武汉大学出版社,2013.

相似文献/References:

[1]张默涵,俞缙,常旭,等.裂隙岩石应力松弛特性及声发射试验[J].华侨大学学报(自然科学版),2023,44(5):574.[doi:10.11830/ISSN.1000-5013.202301008]
 ZHANG Mohan,YU Jin,CHANG Xu,et al.Stress Relaxation Characteristics and Acoustic Emission Experiment of Fractured Rock[J].Journal of Huaqiao University(Natural Science),2023,44(4):574.[doi:10.11830/ISSN.1000-5013.202301008]

备注/Memo

备注/Memo:
收稿日期: 2022-12-22
通信作者: 俞缙(1978-),男,教授,博士,主要从事岩土力学与地下工程的研究.E-mail:bugyu0717@163.com.
基金项目: 国家自然科学基金面上资助项目(42077254); 福建省科技计划引导性项目(2020H0014)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2023-07-20