[1]胡俊,李平.MRAU-net网络下的X光胸片肺野分割算法[J].华侨大学学报(自然科学版),2023,44(3):398-406.[doi:10.11830/ISSN.1000-5013.202206006]
 HU Jun,LI Ping.Lung Field Segmentation Algorithm of X-Ray Chest Film Based on MRAU-Net Network[J].Journal of Huaqiao University(Natural Science),2023,44(3):398-406.[doi:10.11830/ISSN.1000-5013.202206006]
点击复制

MRAU-net网络下的X光胸片肺野分割算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第3期
页码:
398-406
栏目:
出版日期:
2023-05-12

文章信息/Info

Title:
Lung Field Segmentation Algorithm of X-Ray Chest Film Based on MRAU-Net Network
文章编号:
1000-5013(2023)03-0398-09
作者:
胡俊 李平
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
HU Jun LI Ping
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
胸片肺野分割 U-net网络 多尺度信息融合模块 通道和空间双注意力模块 深度残差
Keywords:
chest film lung field segmentation U-net network multi-scale information fusion module channel and space dual attention module deep residual
分类号:
TP391.41;R816.41
DOI:
10.11830/ISSN.1000-5013.202206006
文献标志码:
A
摘要:
为了解决U-net网络进行X光胸片肺野分割时,受限于特征提取能力不足导致分割结果不精确的问题,提出一种多尺度残差注意力U型网络(MRAU-net)模型.利用多尺度信息融合(MIF)模块,改善网络结构,增加对多尺度信息的获取;利用通道和空间双注意力(CSDA)模块,解决网络在有限算力下的信息过载问题.同时,对残差模块进行改进,并与U-net网络进行深度结合,提升网络的学习稳定性,缓解梯度消失和过拟合现象.实验结果表明:文中方法具有优秀的X光胸片肺野分割能力,能获得更精确的分割结果.
Abstract:
In order to solve the problem of imprecise segmentation results caused by insufficient feature extraction ability when U-net network is used to segment lung fields in X-ray chest films, a multi-scale residual attention U-net(MRAU-net)model is proposed. The multi-scale information fusion(MIF)module is used to improve the network structure and increase the acquisition of multi-scale information. Using channel and space dual attention(CSDA)module, the problem of information overload in the network under limited computing power is solved. At the same time, the residual module is improved and deeply combined with the U-net network to improve the learning stability of the network and alleviate the phenomenon of gradient disappearance and over fitting. The experimental results show that the proposed method has excellent segmentation ability of lung field in X-ray chest film, and can obtain more accurate segmentation results.

参考文献/References:

[1] AL-SHARIFY Z T,AL-SHARIFY T A,AL-SHARIFY N T,et al.A critical review on medical imaging techniques(CT and PET scans)in the medical field[J].IOP Conference Series:Materials Science and Engineering,2020,870:012043.DOI:10.1088/1757-899X/870/1/012043.
[2] BERG W A,GUR D,BANDOS A I,et al.Impact of original and artificially improved artificial intelligence-based computer-aided diagnosis on breast US interpretation[J].Journal of Breast Imaging,2021,3(3):301-311.DOI:10.1093/jbi/wbab013.
[3] PADMANABAN S,THIRUNENKADAM K,PADMAPRIYA S T,et al.A role of medical imaging techniques in human brain tumor treatment[J].International Journal of Recent Technology and Engineering,2019,8(4S2):565-568.DOI:10.35940/ijrte.D1105.1284S219.
[4] 张继武,张道兵,史舒娟,等.基于水平集方法的数字胸片图像分割[J].中国图象图形学报,2004,9(12):65-71.DOI:10.3969/j.issn.1006-8961.2004.12.009.
[5] CANDEMIR S,JAEGER S,PALANIAPPAN K,et al.Graph cut based automatic lung boundary detection in chest radiographs[C]//1st Annual IEEE Healthcare Innovation Conference.Houston:IEEE Press,2012:31-34.
[6] 佘广南,陈莹胤,钟丽明,等.基于密集特征匹配的胸片肺野自动分割[J].南方医科大学学报,2016,36(1):61-66.DOI:10.3969/j.issn.1673-4254.2016.01.11.
[7] MATSUYAMA E.A novel method for automated lung region segmentation in chest X-ray images[J].Journal of Biomedical Science and Engineering,2021,14(6):288-299.DOI:10.4236/jbise.2021.146024.
[8] 秦子亮,李朝锋.基于卷积神经网络的胸片肺野自动分割[J].传感器与微系统,2017,36(10):64-66,69.DOI:10.13873/J.1000-9787(2017)10-0064-03.
[9] KIM M,LEE B D.Automatic lung segmentation on chest X-rays using self-attention deep neural network[J].Sensors,2021,21(2):369.DOI:10.3390/S21020369.
[10] RONNEBERGER O,FISCHER P,BROX T.U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Munich:Springer,2015:234-241.
[11] SINGH A,LALL B,PANIGRAHI B K,et al.Deep LF-Net: Semantic lung segmentation from Indian chest radiographs including severely unhealthy images[J].Biomedical Signal Processing and Control,2021,68:102666.DOI:10.1016/J.BSPC.2021.102666.
[12] ABID I,ALMAKDI S,RAHMAN H,et al.A convolutional neural network for skin lesion segmentation using double U-net architecture[J].Intelligent Automation and Soft Computing,2022,33(3):1407-1421.DOI:10.32604/IASC.2022.023753.
[13] LI Meiyu,LIAN Fenghui,LI Yang,et al.Attention-guided duplex adversarial U-net for pancreatic segmentation from computed tomography images[J].Journal of Applied Clinical Medical Physics,2022,23(4):e13537.DOI:10.1002/ACM2.13537.
[14] HUSSAIN S,GUO Fan,LI Weiqing,et al.DilUnet: A U-net based architecture for blood vessels segmentation[J].Computer Methods and Programs in Biomedicine,2022,218:106732.DOI:10.1016/J.CMPB.2022.106732.
[15] PANAHI A,ASKARI M R,AKRAMI M,et al.Deep residual neural network for COVID-19 detection from chest X-ray images[J].SN Computer Science,2022,3(2):1-10.DOI:10.1007/S42979-022-01067-3.
[16] DU Getao,ZHAN Yonghua,ZHANG Yue,et al.Automated segmentation of the gastrocnemius and soleus in shank ultrasound images through deep residual neural network[J].Biomedical Signal Processing and Control,2022,73:103447.DOI:10.1016/J.BSPC.2021.103447.
[17] CHEN Kuanbing,XUAN Ying,LIN Aijun,et al.Lung computed tomography image segmentation based on U-net network fused with dilated convolution[J].Computer Methods and Programs in Biomedicine,2021,207:106170.DOI:10.1016/J.CMPB.2021.106170.
[18] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:2818-2826.DOI:10.1109/CVPR.2016.308.
[19] CHENG Dachuan,LIU C C,HSIEH T C,et al.Bone metastasis detection in the chest and pelvis from a whole-body bone scan using deep learning and a small dataset[J].Electronics,2021,10(10):1201.DOI:10.3390/ELECTRONICS10101201.
[20] SHORTEN C,KHOSHGOFTAAR T M.A survey on image data augmentation for deep learning[J].Journal of Big Data,2019,6(1):1-48.DOI:10.1186/s40537-019-0197-0.
[21] NALEPA J,MARCINKIEWICZ M,KAWULOK M.Data augmentation for brain-tumor segmentation: A review[J].Frontiers in Computational Neuroscience,2019,13:83.DOI:10.3389/fncom.2019.00083.
[22] WANG Xiang,WANG Kai,LIAN Shiguo.A survey on face data augmentation for the training of deep neural networks[J].Neural Computing and Applications,2020,32(19):15503-15531.DOI:10.1007/s00521-020-04748-3.
[23] DUONG H T,NGUYEN T T A.A review: Preprocessing techniques and data augmentation for sentiment analysis[J].Computational Social Networks,2021,8(1):1-16.DOI:10.1186/S40649-020-00080-X.
[24] SHAMBHU S,KOUNDAL D,DAS P.Binary classification of COVID-19 CT images using CNN: COVID diagnosis using CT[J].International Journal of E-Health and Medical Communications,2021,13(2):1-13.DOI:10.4018/IJEHMC.20220701.OA4.
[25] SUN Shuhan,DUAN Lizhen,XU Zhiyong,et al.Blind deblurring based on sigmoid function[J].Sensors,2021,21(10):3484.DOI:10.3390/S21103484.

备注/Memo

备注/Memo:
收稿日期: 2022-06-07
通信作者: 李平(1981-),女,副教授,博士,主要从事非线性系统与智能控制、复杂控制系统的研究.E-mail:pingping_1213@126.com.
基金项目: 国家自然科学基金资助项目(61603144); 福建省自然科学基金资助项目(2018J01095); 福建省高校产学合作科技重大项目(2013H6016); 华侨大学中青年教师科技创新资助计划项目(ZQN-PY509)http://www.hdx
更新日期/Last Update: 2023-05-20